K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

Khó 

28 tháng 1 2016

tim gi vay

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Ta có:

\((ab+cd)^2=a^2b^2+c^2d^2+2abcd\)

\(=a^2b^2+c^2d^2-2abcd+4abcd\)

\(=(ab-cd)^2+4abcd\geq 4abcd=4\)

Vậy \((ab+cd)^2\geq 4\)

\(\Rightarrow ab+cd\geq \sqrt{4}=2\) (với \(ab+cd>0\))

Vậy......

29 tháng 6 2018

Đặt a+b=x;c+d=ya+b=x;c+d=y ta cần chứng minh :xy+4≥2(x+y)⇔(x−2)(y−2)≥0xy+4≥2(x+y)⇔(x−2)(y−2)≥0

Mặt khác ta luôn có x=a+b≥2√ab=2;y=c+d≥2√cd=2x=a+b≥2ab=2;y=c+d≥2cd=2

Như vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=d=1

Đề bài là gì vậy bn ?

3 tháng 12 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)

\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)

\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)

Từ (1) và (2) suy ra ĐPcm

24 tháng 11 2021

D

24 tháng 11 2021

D