Số nghiệm của phương trình 3 x + 2 − 6 2 − x + 4 4 − x 2 = 10 − 3 x
A. 3
B. 0
C. 1
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: =>2x+4>=2x+2-3
=>4>=-1(luôn đúng)
a: 5x+10>3x+3
=>2x>-7
=>x>-7/2
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
Đáp án đúng là B
Giải phương trình ở đáp án B ta được:
\(2x - 4 = 0\)
\(2x = 0 + 4\)
\(2x = 4\)
\(x = 4:2\)
\(x = 2\)
Vậy phương trình có nghiệm là \(x = 2\).
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Lời giải:
ĐKXĐ: $x\leq 3$
$(x-4)(\sqrt{3-x}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ \sqrt{3-x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4(\text{loại do 4>3})\\ x=2(tm)\end{matrix}\right.\)
Vậy số nghiệm thực của pt là $1$
Đáp án B.
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
Điều kiện: x + 2 ≥ 0 2 − x ≥ 0 ⇔ x ≥ − 2 x ≤ 2 ⇔ − 2 ≤ x ≤ 2
Đặt: t = 3 x + 2 − 6 2 − x
+ Với t = 0 ⇒ 3 x + 2 − 6 2 − x = 0
⇔ 3 x + 2 = 6 2 − x ⇔ x + 2 = 8 − 4 x ⇔ x = 6 5
+ Với t = 9
⇒ 3 x + 2 − 6 2 − x = 9 ⇔ x + 2 = 3 + 2 2 − x
⇔ x + 2 = 0 + 8 − 4 x + 12 2 − x ⇔ 5 x − 15 = 12 2 − x
Điều kiện: 5 x − 15 ≥ 0 ⇔ x ≥ 3 (không thỏa mãn − 2 ≤ x ≤ 2 )
Vậy phương trình có 1 nghiệm duy nhất x = 6 5
Đáp án cần chọn là: C