K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

Ta có: P=7+7^2+7^3+...+7^2016

=>P=(7+7^2+7^3+7^4)+(7^5+7^6+7^7+7^8)+...+(7^2013+7^2014+7^2015+7^2016)

=>P=7(1+7+7^2+7^3)+7^5(1+7+7^2+7^3)+...+7^2013(1+7+7^2+7^3)

=>P=7.400+7^5.400+...+7^2013.400

=>P=400(7+7^5+...+7^2013) chia hết cho 400 mà 20^2=400=>P chia hết cho 20^2

 

25 tháng 8 2023

\(A=\dfrac{7^{2020^{2019}}-3^{2016^{2015}}}{5}\)

Xét \(X=2020^{2019}\) và \(Y=2016^{2015}\). Khi đó \(A=\dfrac{7^X-3^Y}{5}\).

Vì cơ số của X tận cùng bằng 0 nên 0.0.0...0 luôn tận cùng bằng 0. Suy ra chữ số tận cùng của X là 0.

Ngoài ra, 20202019 sẽ có 2019 chữ số 0 ở sau cùng, suy ra hai chữ số tận cùng của X là những chữ số 0. Suy ra X chia hết cho 4.

Vì cơ số của Y tận cùng bằng 6 nên 6.6.6...6 luôn tận cùng bằng 6. Suy ra chữ số tận cùng của Y là 6.

Dễ dàng nhận thấy rằng 2016 chia hết cho 4, suy ra Y cũng chia hết cho 4 (y ϵ N*).

Do đó \(A=\dfrac{7^X-3^Y}{5}=\dfrac{7^{\overline{...0}}-3^{\overline{...6}}}{5}=\dfrac{7^{4x}-3^{4y}}{5}\)

Ta lập bảng

n 1 2 3 4 ...
Chữ số tận cùng của 7n 7 9 3 1 ...
Chữ số tận cùng của 3n 3 9 7 1 ...

Dãy trên sẽ lặp lại với chu kì là 4 số hạng. Khi đó chữ số tận cùng của 74n; 34n lần lượt giống chữ số tận cùng của 7n; 3n.

Suy ra \(A=\dfrac{\overline{...1}-\overline{...1}}{5}=\dfrac{\overline{...0}}{5}\).

Dễ nhận thấy rằng A chia hết cho 5A chia hết cho 10. Mà 10 = 5.2 nên 5A cũng chia hết cho 2. Lại có 5 không chia hết cho 2 nên chỉ có trường hợp A chia hết cho 2 (đpcm)

24 tháng 8 2023

Kiểm tra lại đề nhé bạn.

17 tháng 8 2016

nếu : abc+ ( 2a+3b+c) chia hết cho 7, ta có:

abc+ ( 2a+3b+c)=  a.100+b.10+c+2a+3b+c   =   a.98+7.b 

Vì a.98 chia hết cho 7 ( 98 chia hết cho 7 ), 7.b chia hết cho 7

=> a.98+7.b chia hết cho 7

=> abc+ ( 2a+3b+c) chia hết cho 7 

Mà theo đầu bài abc chia hết cho 7 => 2a+3b+c chia hết cho 7 

13 tháng 12 2016

Ta thấy: 7 + 72 + 73 + 74 = 7 + 49 + 343 + 2401 = 2800 chia hết cho 202

P = 7 + 72 + 73 + ... + 72016 = ( 7 + 72 + 73 + 74) + 74( 7 + 72 + 73 + 74) + ... +  72012( 7 + 72 + 73 + 74)

P = 2800 + 74 . 2800 + ... + 72012 . 2800 = 2800( 1 + 74 + ... + 72012 )

Mà 2800 chia hết cho 202 \(⇒\)  P chia hết cho 202 

29 tháng 12 2015

P=7(1+7+72+73+...+72015)

P=7[(1+7+72+73)+(74+75+76+77)+...+(72012+72013+72014+72015)]

P=7[400+74(1+7+72+73)+...+72012(1+7+72+73)]

P=7[400(1+74+...+72012)]

P=202[7(1+74+...+72012)] chia hết cho 202 (đpcm)

17 tháng 12 2017

Ta có:\(A=2+2^2+........+2^{2011}\)

\(=\left(2+2^2+2^3\right)+.............\left(2^{2008}+2^{2009}+2^{2010}\right)+2^{2011}\)

\(=2\left(1+2+2^2\right)+..........+2^{2008}\left(1+2+2^2\right)+2^{2011}\)

\(=2.7+2^4.7+..............+2^{2008}.7+2^{2011}\) không chia hết cho 7