TÍNH NHANH :
( 1 - 1/4 ) x ( 1 - 1/9 ) x ( 1 - 1/16 ) x ( 1 - 1/25 ) x ( 1 - 1/36 ) x (1 - 1/49 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài bạn viết khó hiểu quá. Bạn nên viết lại rõ ràng, mạch lạc, có ngắt nghỉ và xuống dòng hợp lý.
\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).\left(1-\frac{1}{25}\right).\left(1-\frac{1}{36}\right)\)
\(=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.\frac{35}{36}=\frac{3.8.15.24.35}{4.9.16.25.36}=\frac{1.3.2.4.3.5.4.6.5.7}{2.2.3.3.4.4.5.5.6.6}\)
\(=\frac{\left(1.2.3.4.5\right).\left(3.4.5.6.7\right)}{\left(2.3.4.5.6\right).\left(2.3.4.5.6\right)}=\frac{1.7}{2.2}=\frac{7}{4}\)
a) 3/7 + 4/9 + 4/7 + 5/9
= ( 3/7 + 4/7 ) + ( 4/9 + 5/9 )
= 7/7 + 9/9
= 1 + 1
= 2
b)1/5 + 4/10 + 9/15 + 16/20 + 25/25 + 36/30 + 49/35 + 64/40 + 81/45
= 1/5 + 2/5 + 3/5 + 4/5 + 5/5 + 6/5 + 7/5 + 8/5 + 9/5
= ( 1/5 + 9/5 ) + ( 2/5 + 8/5 ) + (7/5 + 3/5 ) + ( 4/5 + 6/5 ) + 5/5
= 2 + 2 + 2 + 2 + 1
= 2 x 4 + 1
= 8 +1
= 9
c) 1/8 + 1/12 + 3/8 + 5/12
= ( 1/8 + 3/8 ) + ( 1/12 + 5/12)
= 4/8 + 6/12
= 1/2 + 1/2
= 2/4 = 1/2
mỏi tay rồi
d; (1 - \(\dfrac{1}{2}\)) x (1 - \(\dfrac{1}{3}\)) x (1 - \(\dfrac{1}{4}\)) x ... x ( 1 - \(\dfrac{1}{100}\))
= \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{3}{4}\) x ... x \(\dfrac{99}{100}\)
= \(\dfrac{1}{100}\)
Tacó cho công thức tổng quát: A2 - B2 = (A+B).(A-B)
A = (1-1/4)x(1-1/9)x(1-1/16)x(1-1/25)x(1-1/3...
= (1+1/2) x (1-1/2) x (1+1/3) x (1-1/3) x...x (1+1/n) x (1-1/n)
= (1+1/2) x (1+1/3) x (1+1/4) x ... x [1 + 1/(n-1) ] x (1 + 1/n)
x (1-1/2) x (1-1/3) x (1-1/4) x ... x [1 - 1/(n-1) ] x (1 - 1/n)
= 3/2 x 4/3 x 5/4 x ... x [ n/(n-1) ] x [ (n+1)/n ]
x 1/2 x 2/3 x 3/4 x ... x [ (n-2)/(n-1) ] x [ (n-1)/n]
Vậy dãy A là:
A = 1/2 x 2/3 x 3/2 x 3/4 x 4/3 x 4/5 x 5/4 x .... x [ (n-2)x(n-1) ] x [ (n-1)/n] x [ n/(n-1)] x [ (n+1)/n]
= 1/2 x 1 x 1 x 1 x ... x 1 x [(n+1)/n]
\(\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{9}\right)\times\left(1-\frac{1}{16}\right)\times\left(1-\frac{1}{25}\right)\times\left(1-\frac{1}{36}\right)\)
\(=\)\(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times\frac{35}{36}\)
\(=\)\(\frac{3\times8\times15\times24\times35}{4\times9\times16\times25\times36}\)
\(=\)\(\text{}\text{}\text{}\text{}\text{}\text{}\frac{\text{}\text{}\text{}\text{}\text{}\text{}3\text{}\text{}\text{}\text{}\text{}\text{}\times4\text{}\text{}\text{}\text{}\text{}\text{}\times2\text{}\text{}\text{}\text{}\text{}\text{}\times5\text{}\text{}\text{}\text{}\text{}\text{}\times3\text{}\text{}\text{}\text{}\text{}\text{}\times6\text{}\text{}\text{}\text{}\text{}\text{}\times4\text{}\text{}\text{}\text{}\text{}\text{}\times5\text{}\text{}\text{}\text{}\text{}\text{}\times7}{4\text{}\text{}\text{}\text{}\text{}\text{}\times3\text{}\text{}\text{}\text{}\text{}\text{}\times3\text{}\text{}\text{}\text{}\text{}\text{}\times8\text{}\text{}\text{}\text{}\text{}\text{}\times2\text{}\text{}\text{}\text{}\text{}\text{}\times5\text{}\text{}\text{}\text{}\text{}\text{}\times5\text{}\text{}\text{}\text{}\text{}\text{}\times6\text{}\text{}\text{}\text{}\text{}\text{}\times6}\)
\(=\)\(\frac{7\text{}\text{}\text{}\times4}{8\times6}\)
\(=\)\(\frac{7\times4}{4\times2\times6}\)
\(=\)\(\frac{7}{2\times6}\)
\(=\)\(\frac{7}{12}\)
=(1-1/3)(1-1/4)(1-1/5)*...*(1-1/50)(1+1/3)(1+1/4)*...*(1+1/50)
=2/3*3/4*...*49/50*4/3*5/4*...*51/50
=2/50*51/3=17*1/25=17/25
\(\left(1-\dfrac{1}{9}\right)\cdot\left(1-\dfrac{1}{16}\right)\cdot\left(1-\dfrac{1}{25}\right)\cdot...\cdot\left(1-\dfrac{1}{2500}\right)\)
\(=\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\cdot\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\cdot...\cdot\left(\dfrac{2500}{2500}-\dfrac{1}{2500}\right)\)
\(=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
\(=\dfrac{8\cdot15\cdot24\cdot...\cdot2499}{9\cdot16\cdot25\cdot...\cdot2500}\)
\(=\dfrac{\left(2\cdot4\right)\cdot\left(3\cdot5\right)\cdot\left(4\cdot6\right)\cdot....\cdot\left(49\cdot51\right)}{\left(3\cdot3\right)\cdot\left(4\cdot4\right)\cdot\left(5\cdot5\right)\cdot...\cdot\left(50\cdot50\right)}\)
\(=\dfrac{\left(2\cdot3\cdot4\cdot5\cdot...\cdot49\right)\left(4\cdot5\cdot6\cdot...\cdot51\right)}{\left(2\cdot3\cdot4\cdot...\cdot50\right)\left(2\cdot3\cdot4\cdot...\cdot50\right)}\)
\(=\dfrac{1\cdot51}{50\cdot2}\)
\(=\dfrac{51}{100}\)
4/7 nha
5=5MKINIVFTHM