Tìm đa thức A sao cho A + x 3 y - 2 x 2 y + x - y = 2 y + 3 x + x 2 y
A. A = - x 3 y + 3 x 2 y - 2 x - 3 y
B. A = - x 3 y + x 2 y - 2 x - 3 y
C. A = - x 3 y + 3 x 2 y + 2 x + 3 y
D. A = x 3 y - 3 x 2 y + 2 x + 3 y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)
\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)
Câu 2:
\(\dfrac{\left[2\left(x-y\right)^3-7\left(y-x\right)^2-\left(y-x\right)\right]}{x-y}\)
\(=\dfrac{2\left(x-y\right)^3-7\left(x-y\right)^2+\left(x-y\right)}{x-y}\)
\(=2\left(x-y\right)^2-7\left(x-y\right)+1\)
a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)
\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
P=\(A+B=x^2y^2-x^2-3\)
\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)
b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)
Ta có:
A + x 3 y − 2 x 2 y + x − y = 2 y + 3 x + x 2 y ⇔ A = 2 y + 3 x + x 2 y − x 3 y + 2 x 2 y − x + y A = − x 3 y + 3 x 2 y + 2 x + 3 y
Chọn đáp án C