Tìm x=ab biết:
a)x chia hết cho 5 và x chia hết cho 9
b)x là số chính phương lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: x=ƯCLN(112;200)=8
a: x chia hết cho 8;12;30
nên \(x\in BC\left(8;12;30\right)=B\left(120\right)\)
mà 300<=x<=450
nên x=360
a: \(18=3^2\cdot2;36=3^2\cdot2^2\)
=>\(BCNN\left(18;36\right)=3^2\cdot2^2=36\)
\(x⋮18;x⋮36\)
=>\(x\in BC\left(18;36\right)\)
=>\(x\in B\left(36\right)\)
mà x là số nhỏ nhất khác 0
nên x=36
b: \(25=5^2;45=5\cdot3^2\)
=>\(ƯCLN\left(25;45\right)=5\)
\(25⋮x;45⋮x\)
=>\(x\inƯC\left(25;45\right)\)
mà x là số lớn nhất khác 0
nên x=ƯCLN(25;45)
=>x=5
a: 450 chia hết cho x
396 chia hết cho x
=>\(x\inƯC\left(450;396\right)\)
=>\(x\inƯ\left(18\right)\)(Vì ƯCLN(450;396)=18)
mà x>12
nên x=18
b: 285+x chia hết cho x
=>285 chia hết cho x(1)
306-x chia hết cho x
=>306 chia hết cho x(2)
Từ (1), (2) suy ra \(x\inƯC\left(285;306\right)\)
=>\(x\inƯ\left(3\right)\)
mà x>=3
nên x=3
c: x chia 8;12;16 đều dư 1
=>x-1 chia hết cho 8;12;16
=>\(x-1\in B\left(48\right)\)
mà 40<x<100
nên x-1=48 hoặc x-1=96
=>x=49 hoặc x=97
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản
Để tìm số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên, chúng ta có thể thử từng giá trị của a cho đến khi tìm được số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Theo yêu cầu của bài toán, ta có:
Với các điều kiện trên, chúng ta có thể thử từng giá trị của a để tìm số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Ta có thể phân tích số 2023 thành tích của các thừa số nguyên tố như sau: 2023 = 7 x 17 x 17. Vì vậy, để tích 2023 x a là một số chính phương, ta cần a chia hết cho 7 và 17.
Tiếp theo, ta xét điều kiện a chia hết cho 2 hoặc a chia hết cho 3. Ta thử từng giá trị của a để tìm số a thỏa mãn các điều kiện trên.
Từ các phân tích trên, ta có thể thử các giá trị a như sau:
Vậy, số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên là a = 119.
Dài thế bạn
Có đúng ko vậy bài này là đề thi thử mà có 0,5 mà sao khó zậy bạn
a) Vì x chia hết cho 5 và 9 => ab chia hết cho 5 và 9
=> b=0 hoặc bằng 5
Mà ab chia hết cho 9 => a+0 = a hoặc a+5 chia hết cho 9
Để a+0 chia hết cho 9 thì a phải bằng 9
Để a+5 chia hết cho 9 thì a phải bằng 4
Vậy x={90;45}
b) Vì x là số chính phương => ab là số chính phương => ab= c2 ( c>0 và thuộc N*)
Vì nếu c=10 thì c2= 100 mà ab là số có 2 chữ số chữ số => c<10
=> c={1;2;3;4;5;6;7;8;9)
Nếu c=1 thì c2=1
Nếu c=2 thì c2= 4
Nếu c=3 thì c2=9
..........................
Nếu c=9 thì c2=81
Nhận thấy: 81 là số lớn nhất
=> ab=81 => x=81
chúc bạn học tốt!!!