Cho a,b,c. là số dương. Chứng minh: a/(b+c) + b/(a+c) + c/(a+b) > hoặc = 3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
\(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
C/m BĐT phụ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) (*) với x, y, z dương
Áp dụng BĐT Cô-si ta có:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
ÁP dụng BĐT (*) ta có:
\(VT=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)
\(VT\ge\frac{1}{2}.9-3\)\(=\)\(\frac{3}{2}\) (đpcm)
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a^2}{ab+ac}+\frac{b^2}{ba+bc}+\frac{c^2}{ca+cb}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Áp dụng bất đẳng thức Cauchy ta có
\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
tương tự ta có
\(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(c+1\right)\left(a+1\right)}};\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)
khi đó ta được
\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\Rightarrow ab\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)
Áp dụng tương tự ta được\(bc\ge\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1};ca\ge\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)
Cộng theo vế các bất đẳng thức trên ta được
\(ab+bc+ca\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)
mặt khác theo bất đẳng thức Cauchy ta lại có
\(\frac{\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\ge3\)
suy ra \(ab+bc+ca\ge12\)vậy bất đẳng thức được chứng minh
đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a+1}{1+b^2}=a+1-\frac{b^2\left(a+1\right)}{1+b^2}\ge a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab}{2}-\frac{b}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc}{2}-\frac{c}{2};\frac{c+1}{1+a^2}\ge a+1-\frac{ac}{2}-\frac{a}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge a+b+c+3-\frac{ab+bc+ca}{2}-\frac{a+b+c}{2}\)
\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}-\frac{3}{2}=3=VP\)
Khi \(a=b=c=1\)
Bài 6 . Áp dụng BĐT Cauchy , ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ ( a + b)2 ≥ 4ab
⇔ \(\dfrac{\left(a+b\right)^2}{4}\)≥ ab
⇔ \(\dfrac{a+b}{4}\) ≥ \(\dfrac{ab}{a+b}\) ( 1 )
CMTT , ta cũng được : \(\dfrac{b+c}{4}\) ≥ \(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ac}{a+c}\)( 3)
Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :
\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
⇔ \(\dfrac{a+b+c}{2}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
Bài 4.
Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :
\(1+\dfrac{a}{b}\) ≥ \(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)
\(1+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)
\(1+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)
Nhân từng vế của ( 1 ; 2 ; 3) , ta được :
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\) ≥ \(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)
a) Áp dụng BĐT côsi ta có:\(\frac{a}{b}+\frac{b}{a}>=2\cdot\sqrt[2]{\frac{a}{b}\cdot\frac{b}{a}}=2\)
b)bạn nhân hết ra rồi áp dụng BĐT cối là được!!!!
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{a+b+b+c+c+d+d+a}=\frac{1}{2}\)
Dấu "=" xảy ra <=> a = b = c = d = 1/4
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{a+b+c}{2}\)
\(\Leftrightarrow\frac{a+b+c}{2}\ge\frac{3}{2}\)
\(\Leftrightarrow a+b+c\ge3\)
Dấu ''='' chỉ xảy ra khi \(a=b=c=1\left(đpcm\right)\)