K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=x+1-1\)

\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-1\right)\)

\(\Leftrightarrow\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)

\(\Leftrightarrow2x-5=-1\)

\(\Leftrightarrow x=2\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{5}{3}\)

\(6x+10+4\sqrt{6x+10}+4=4x^2+20x+25\)

\(\Leftrightarrow\left(\sqrt{6x+10}+4\right)^2=\left(2x+5\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}+4=2x+5\\\sqrt{6x+10}+4=-2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}=2x+1\left(1\right)\\\sqrt{6x+10}=-2x-9< 0\left(loại\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow6x+10=4x^2+4x+1\) \(\left(x\ge-\dfrac{1}{2}\right)\)

\(\Leftrightarrow4x^2-2x-9=0\)

\(\Rightarrow x=\dfrac{1+\sqrt{37}}{4}\)

a) ĐKXĐ : \(x\ge-3\)\(pt\Leftrightarrow x^2-2x+1=x+3-4\sqrt{x+3}+4\Leftrightarrow\left(x-1\right)^2=\left(\sqrt{x+3}-2\right)^2\Leftrightarrow x-1=\sqrt{x+3}-2\Leftrightarrow x+1=\sqrt{x+3}\Leftrightarrow\left(x+1\right)^2=x+3\left(x\ge-1\right)\Leftrightarrow x^2+2x+1=x+3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(tmdk\right)\\x=-2\left(kotm\right)\end{matrix}\right.\)

19 tháng 6 2021

cảm ơn bạn

 

30 tháng 10 2023

a: ĐKXD: x<>0

\(\dfrac{14x^3+12x^2-14x}{2x}=\left(x+2\right)\left(3x-4\right)\)

=>\(\dfrac{2x\left(7x^2+6x-7\right)}{2x}=\left(x+2\right)\left(3x-4\right)\)

=>\(7x^2+6x-7=3x^2-4x+6x-8\)

=>\(7x^2+6x-7=3x^2+2x-8\)

=>\(4x^2+4x+1=0\)

=>\(\left(2x+1\right)^2=0\)

=>2x+1=0

=>x=-1/2(nhận)

b: \(\left(4x-5\right)\left(6x+1\right)-\left(8x+3\right)\left(3x-4\right)=15\)

=>\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)

=>\(24x^2-26x-5-24x^2+23x+12=15\)

=>-3x+7=15

=>-3x=8

=>\(x=-\dfrac{8}{3}\)

a: =x^4-3x^5+4x^8

b: =2x^3+2x^2+4x

c: =4x^2+8x-5

d: =2x+3x^2+7x^4

3 tháng 10 2018

heloo

hello

hello

8 tháng 11 2018

<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)

mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\)\(\sqrt{5\left(x^2-1\right)^2+4}\ge4\)\(2\left(x+1\right)^2\ge0\)với mọi x 

=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)

'=" xảy ra<=> x+1=0<=> x=-1