K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

Lời giải:

Xét hiệu:

$a^2+b^2+c^2-(2ab-2ac+2bc)=a^2+b^2+c^2-2ab+2ac-2bc$

$=(a^2+b^2-2ab)+c^2+2c(a-b)$

$=(a-b)^2+c^2+2c(a-b)=(a-b+c)^2\geq 0, \forall a,b,c\in\mathbb{R}$
$\Rightarrow a^2+b^2+c^2\geq 2ab-2ac+2bc$

Vậy ta có đpcm.

Dấu "=" xảy ra khi $a-b+c=0$

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để đề được rõ ràng hơn nhé.

19 tháng 3 2016

Đặt  \(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)

Với mọi  \(a,b,c>0\)  thì ta có bất đẳng thức luôn đúng với điều kiện trên như sau:

 \(a^3+b^3\ge a^2b+ab^2;\)  \(b^3+c^3\ge b^2c+bc^2\)  và  \(b^3+c^3\ge b^2c+bc^2\)

Khi đó, vế trái của bất đẳng thức cần chứng minh, tức biểu thức  \(A\)  sẽ trở thành:

\(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge\frac{a^2b+ab^2}{2ab}+\frac{b^2c+bc^2}{2bc}+\frac{c^2a+ca^2}{2ca}=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c\)

Xảy ra đẳng thức trên khi và chỉ khi  \(a=b=c\)

Giỏi thế em :v Mới lớp 8 mà đã đỉnh vậy ._.

4 tháng 8 2020

Ta có BĐT: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\).

BĐT trên dễ dàng chứng minh được bằng cách sử dụng phép biến đổi tương đương.

Do đó: \(\left(\sum\sqrt{a^2+2bc}\right)^2\le3\left(\sum a^2+2\sum bc\right)=3\left(a+b+c\right)^2\)

\(\Rightarrow\sum\sqrt{a^2+2bc}\le\sqrt{3}\left(a+b+c\right)\)

14 tháng 7 2015

Biến đổi vế trái ta có 

(a+b+c)^2 = (a+b + c)( a+b+c) = a(a+b + c) + b(a+b+c ) + c (a+b+c )

                                              = a^2 + ab +ac + ab + b^2 + bc + ac + bc + c^2 

                                               = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac => ĐPCM

14 tháng 8 2024

Ta có:

(a + b + c)2 = (a + b + c)(a + b + c)

= a2 + ab + ac + ab + b2 + bc + ac + bc + c2

= a2 + b2 + c2 + 2ab + 2bc + 2ac (đpcm)

Vậy (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac.

20 tháng 11 2017

đặt A=...

Áp dúng bất đẳng thức bu nhi a ta có 

\(A^2\le3\left(1+a^2+2bc+1+b^2+2ac+1+c^2+2ab\right)=3\left[\left(a+b+c\right)^2+3\right]\)

=> \(A^2\le36\Rightarrow A\le6\) (ĐPCM)

dấu = xảy ra <=> a=b=c=1

9 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}\)

\(=\dfrac{3^2}{\left(a+b+c\right)^2}=\dfrac{9}{\left(a+b+c\right)^2}=9\left(a+b+c\le1\right)\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)