\(\sqrt{25+144}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a: \(\sqrt{5\left(1-a\right)^2}\)
\(=\sqrt{5\left(a-1\right)^2}\)
\(=\sqrt{5}\cdot\sqrt{\left(a-1\right)^2}\)
\(=\sqrt{5}\left|a-1\right|\)
\(=\sqrt{5}\left(a-1\right)\)(do a>1 nên a-1>0)
b: \(\sqrt{\dfrac{9\left|a^2+2a+1\right|}{144}}\)
\(=\sqrt{\dfrac{9}{144}\cdot\left|a^2+2a+1\right|}\)
\(=\sqrt{\dfrac{1}{16}\cdot\left|\left(a+1\right)^2\right|}\)
\(=\sqrt{\dfrac{1}{16}}\cdot\sqrt{\left|\left(a+1\right)^2\right|}\)
\(=\dfrac{1}{4}\cdot\left(a+1\right)^2\)
c:
ĐKXĐ: x<>5
Sửa đề:\(\dfrac{2}{x-5}\cdot\sqrt{\dfrac{x^2-10x+25}{64}}\)
\(=\dfrac{2}{x-5}\cdot\sqrt{\dfrac{\left(x-5\right)^2}{64}}\)
\(=\dfrac{2}{x-5}\cdot\dfrac{\sqrt{\left(x-5\right)^2}}{\sqrt{64}}\)
\(=\dfrac{2}{x-5}\cdot\dfrac{\left|x-5\right|}{8}\)
\(=\pm\dfrac{1}{4}\)
d: \(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{x}-\sqrt{x}\cdot1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\sqrt{x}\)

C = \(\frac{2}{3}\sqrt{144}-\left(-\frac{3}{4}\right)\div\sqrt{\frac{225}{144}}\)
C = \(\frac{2}{3}.12+\frac{3}{4}\div\frac{5}{4}\)
C = \(8+\frac{3}{5}\)
C = \(8\frac{3}{5}\)
D = \(\frac{4^6.25^5-2^{12}.25^4}{2^{12}.5^8-10^8.64}\)
D = \(\frac{\left(2^2\right)^6.\left(5^2\right)^5-2^{12}.\left(5^2\right)^4}{2^{12}.5^8-\left(2.5\right)^8.2^6}\)
D = \(\frac{2^{12}.5^{10}-2^{12}.5^8}{2^{12}.5^8-2^8.5^8.2^6}\)
D = \(\frac{2^{12}.5^8.\left(25-1\right)}{2^{12}.5^8.\left(1-2^2\right)}\)
D = \(\frac{24}{-3}\)
D = \(-8\)
\(C=\frac{2}{3}\sqrt{144}-\left(\frac{-3}{4}\right):\sqrt{\frac{225}{144}}\)
\(=\frac{2}{3}\cdot12+\frac{3}{4}:\frac{5}{4}\)
\(=8+\frac{3}{4}\cdot\frac{4}{5}\)
\(=8+\frac{3}{5}\)
\(=\frac{40}{5}+\frac{3}{4}=\frac{43}{5}\)
\(D=\frac{4^6\cdot25^5-2^{12}\cdot25^4}{2^{12}\cdot5^8-10^8\cdot64}=\frac{\left(2^2\right)^6\cdot\left(5^2\right)^5-2^{12}\cdot\left(5^2\right)^4}{2^{12}\cdot5^8-\left(2\cdot5\right)^8\cdot2^6}\)
\(=\frac{2^{12}\cdot5^{10}-2^{12}\cdot5^8}{2^{12}\cdot5^8-2^{14}\cdot5^8}=\frac{5^8\left(2^{12}\cdot5^2-2^{12}\right)}{5^8\left(2^{12}-2^{14}\right)}\)
\(=\frac{2^{12}\cdot5^2-2^{12}}{2^{12}-2^{14}}=\frac{2^{12}\left(5^2-1\right)}{2^{12}\left(1-2^2\right)}=\frac{24}{-3}=-8\)

Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{3x+25+2y-169+z+144}{144+25+169}=\frac{(3x+2y+z)+25-169+144}{144+25+169}=\frac{1}{2}$
Suy ra:
$3x+25=144.\frac{1}{2}=72\Rightarrow x=\frac{47}{3}$
$2y-169=25.\frac{1}{2}\Rightarrow y=\frac{363}{4}$
$z+144=169.\frac{1}{2}\Rightarrow z=\frac{-119}{2}$
P/s: Lần sau bạn lưu ý ghi đầy đủ yêu cầu đề bài.

Áp dụng quy tắc khai phương một thương, hãy tính :
a) 9169−−−−√ = \(\sqrt{\dfrac{3^2}{13^2}}\) = \(\left|\dfrac{3}{13}\right|\) = \(\dfrac{3}{13}\)
b) 25144−−−−√ = \(\sqrt{\dfrac{5^2}{12^2}}\) = \(\left|\dfrac{5}{12}\right|\) = \(\dfrac{5}{12}\)
c) 1916−−−−√ = \(\sqrt{\dfrac{25}{16}}\) = \(\sqrt{\dfrac{5^2}{4^2}}\) = \(\left|\dfrac{5}{4}\right|\) = \(\dfrac{5}{4}\)
d) 2781−−−−√ = \(\sqrt{\dfrac{169}{81}}\) = \(\sqrt{\dfrac{13^2}{9^2}}\) = \(\left|\dfrac{13}{9}\right|\) = \(\dfrac{13}{9}\)


13
\(\sqrt{25+144}=\sqrt{169}=13\)