Với mọi số a,b,c. CMR: a^2 + b^2 + c^2 > = ab + ac + bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BPT <=> a^2 + b^2 + c^2 - ab - bc - ca >=0
=> 2 (a^2 + b^2 + c^2 - ab - bc -ca)>=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc- 2ac >=0
=> a^2 - 2ab + b^2 + b^2 - 2bc+ c^2 + c^2 - 2ac +a^2 >0
=> ( a - b)^2 + ( b- c)^2 + ( c-a)^2 >0
Luôn đúng
Dấu '=' xảy ra khi a = b= c
a^4 +b^4 >= ab^3 +a^3 b (1)
<=> 4a^4 +4b^4 - 4ab(a^2 +b^2) >= 0
<=> [(a^2 +b^2 )^2 - 4ab(a^2 +a^2) +4a^2 b^2 ] +3a^4 +3b^4 -6a^2 b^2 >=0
<=> (a -b )^4 +3(a^4 + b^4 -2a^2 b^2 ) >= 0 (2)
cos (a-b )^4 >= 0
a^4 + b^4 >= 2a^2 b^2 (co si có thể không cần co si cũng được )
=> (2) đúng => (1) đúng => dpcm
b) a^2 +b^2 +1 >= ab +a+b (1)
<=>2a^2 +2b^2 +2 -2ab -2a-2b >=0
<=>[a^2 +b^2 -2ab ] +[a^2 -2a +1] +[b^2 -2b +1 ] >=0
<=>(a -b)^2 +(a-1)^2 + (b-1)^2 >=0 (2)
(2) đúng (1) đúng => dpcm
Câu a bạn chứng minh được rồi là xong nha !!!!!!!
Câu b)
\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)
\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được:
=> \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)
=> \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
DẤU "=" Xảy ra <=> \(a=b=c\)
Vậy ta có ĐPCM !!!!!!!!
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
Theo BĐT Cô-si, ta có:\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca\)
Cộng từng vế của các BĐT vs nhau, ta dược:\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\left(dfcm\right)\)