a, 45 - 27 : 3 + 6
B, 80 - [ 130 - 8 . ( 7 - 4 ) MŨ 2]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(\dfrac{1}{243}\right)^6=\left(\dfrac{1}{3}\right)^{5\cdot6}=\left(\dfrac{1}{3}\right)^{30}\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{28}>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{3^4}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{81}\right)^7>\left(\dfrac{1}{243}\right)^6\)
mà \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{81}\right)^7\)
nên \(\left(\dfrac{1}{80}\right)^7>\left(\dfrac{1}{243}\right)^6\)
\(\left(\dfrac{3}{8}\right)^5\&\left(\dfrac{5}{243}\right)^3\)
\(\left(\dfrac{3}{8}\right)^5=\left(\dfrac{90}{240}\right)^5=\dfrac{90^5}{240^5}\)
\(\left(\dfrac{5}{243}\right)^3=\dfrac{5^3}{243^3}\)
\(=>\dfrac{90^5}{240^5}>\dfrac{5^3}{243^3}\)
\(=>\left(\dfrac{3}{8}\right)^5>\left(\dfrac{5}{243}\right)^3\)
a) 2x-3=-x+6
2x - 3 + x - 6 =0
3x -9 = 0
3x = 9
x = 9 : 3
x= 3
c/ \(\left(-12x-4^3\right).8^3=4.8^4\)
\(\left(-12x-64\right).512=16384\)
\(-12x-64=\dfrac{16384}{512}=32\)
\(-12x=32+64=96\)
\(x=\dfrac{96}{\left(-12\right)}=-8\)
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B
a) 5. 42 - 18 : 32 = 5 . 16 -18 : 9 = 80 - 2 = 78
b) 33 .18 -33 .12 = 33 . 6 = 27 .6 = 162
c) 39 . 213 + 87 . 39 = 39 . ( 213 + 87 ) = 39 . 300 = 11700
d) 80 - [ 130 - ( 12 - 4 ) .2 ] = 80 - (130 - 8.2 ) = 80 - 114 = -34
OK
\(a,\)\(\frac{2^5\times3^{12}\times7^8}{2^7\times3^{10}\times7^9}=\frac{3^2\times\left(2^5\times3^{10}\times7^8\right)}{2^2\times7\times\left(2^5\times3^{10}\times7^8\right)}\)\(=\frac{3^2}{2^2\times7}=\frac{9}{28}\)
\(b,\)Tương tự
\(a,\left(3^2\cdot5^2\cdot4^3\right):\left(8\cdot3^2\right)\)
\(=\frac{3^2\cdot5^2\cdot4^3}{8\cdot3^2}\)
\(=\frac{3^2\cdot5^2\cdot2^6}{2^3\cdot3^2}\)
\(=5^2\cdot2^3\)
\(=25\cdot8=200\)
\(b,\left(2^{10}\cdot13+2^9\cdot130\right):\left(2^8\cdot104\right)\)
\(=\frac{2^{10}\cdot13+2^9\cdot130}{2^8\cdot104}\)
\(=\frac{2^9\cdot\left(2\cdot13+130\right)}{2^8\cdot2^3\cdot13}\)
\(=\frac{2^9\cdot156}{2^{11}\cdot13}\)
\(=\frac{2^9\cdot2^3\cdot3\cdot13}{2^{11}\cdot13}\)
\(=\frac{2^{12}\cdot3\cdot13}{2^{11}\cdot13}\)
\(=2.3=6\)