Cho tứ giác ABCD là hình vuông, BN=OM, AH ⊥ MN tại H. CMR : O,H,B thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác OEB và tam giác OMC có:
góc OBE = góc OCM (t/c đường chéo hv)
OC = OB ( nt)
EB = MC (gt)
Vậy tam giác OEB = tam giác OMC (c-g-c)
=> EO = MO (1) và góc EOB = góc MOC
mà góc BOC = góc BOM + góc MOC = 90 độ
=> góc EOM = góc EOB + góc BOM = 90 độ (2)
Từ (1),(2) => tam giác OEM vuông cân
b) Ta có: AB//CN (N thuộc DC)
ÁP dụng định lí Ta - let tá được:
AM/MN= BM/MC mà BM=AE và MC=BE (gt)
=> AM/MN = AE/BE
=> EM//BN (đ/l Ta - let đảo)
Phần còn lại mình còn đang suy nghĩ.
![](https://rs.olm.vn/images/avt/0.png?1311)
1: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của đường chéo BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
![](https://rs.olm.vn/images/avt/0.png?1311)
1: Xét tứ giác BHCD có
CH//BD
BH//CD
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
![](https://rs.olm.vn/images/avt/0.png?1311)
tam giác NAM chỉ có thể cân thôi ko vuông cân dc,D,H,B đâu có thẳng hàng đâu ta
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
BN=OM ??
BN = DM nha bn :>