Bài 3. Một số tự nhiên khi chia cho 4 dư 3, chia cho 5 dư 4; chia cho 6 dư 5. Biết rằng số đó nằm trong khoảng từ 200 đến 400. Hãy tìm số tự nhiên đ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có theo để bài:
a: 4 dư 3
a: 5 dư 4
a: 6 dư 5
=> a+ 1 chia hết cho 3; 4;5
=> a+1 là BC( 3;4;5)
Ta có: BCNN( 3;4;5)= 60
=> a+ 1 thuộc { 60; 120; 180; 240; ...}
Mà a nằm trong khoảng từ 200 đến 300
=> a+1 cũng vậy
=> a+ 1= 240
=> a= 240- 1
=> a= 239
Vậy số tự nhiên đó là 239.
\(BC\left(4;5;6\right)=\left\{60;120;180;240;300...\right\}\)
Vì số đó nằm trong khoảng cách từ \(200\) đến \(300\) nên ta có số \(240\)
Vậy số đó là:
\(240-1=239\)
Đáp số : \(239\)
gọi so phải tìm là X
Theo đề bài ta co X+2 chia hết cho 3,4,5,6
=> X+2 là bội chung của 3,4,5,6
VCNN{3;4;5;6}=60 nên X+2=60.N
Do đó X=60.N‐2{N=1;2;3;4...}
mặt khác X chia hết cho 11 lần lượt cho n = 1;2;3...
Ta thấy N=7 thì x=418 chia hết cho 11
vậy số nhỏ nhất phả tìm là 418
Gọi a là số tự nhiên cần tìm a
Theo đề ta có : a + 2 chia hết cho 3; 4; 5;6 hay a + 2 là BC(3;4;5;6)
3 = 3
4 = 22
5 = 5
6 = 2 x 3
BCNN(3;4;5;6) = 22 x 3 x 5 = 60
BC (3;4;5;6) = B(60) = {0;60;120;..........}
a \(\in\){ 58 ; 118;.............} ̣
Số tự nhin cần tìm là :
( theo đề thì bạn cứ chọn 1 số nhé..! )
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
gọi số đó là a thì a +1 chia hết cho 4,5,6 => a là bội chung của 4,5,6 hay là bội của 60
suy ra a +1 thuộc tập hợp các số {0;60;120;240;360;420...}
vì 200 ≤ a ≤ 400 nên 201 ≤ a+1 ≤ 401
do đó a+1 thuộc {240;360}
=> a =239 hoặc a =359