help me.....
9x2=4(2x-3)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{4^{x+2}+4^{x+1}+4^x}{21}=\frac{3^{2x}+3^{2x+1}+3^{2x+3}}{31}\)
\(\Rightarrow\frac{4^x\left(4^2+4+1\right)}{21}=\frac{3^{2x}\left(1+3+3^3\right)}{31}\)
\(\Rightarrow\frac{4^x.21}{21}=\frac{3^{2x}.31}{31}\)
=> 4x = 32x
=> 4x = (32)x
=> 4x = 9x
=> \(\frac{4^x}{9^x}=1\)(vì lũy thừa của một số khác 0 luôn luôn là 1 số khác 0)
=> \(\left(\frac{4}{9}\right)^x=1\)
=> x = 0
Vậy x = 0
(69.210.210) : (219.273+15.49.94)
=((2.3)9.(2.2)10): (219.(33)3+15.(22)9.(32)4)
= (29.39.(22)10) : (219.39+15.218.38)
= (29.39.220) : (218.38.(2.3+15))
= (29.39.22.218) :(218.38.21)
=(211.39.218) : (218.39.7)
=211:7
=\(\frac{2048}{7}\)
tham khảo
A=x2+2x+5+x2−4x+4x2+2x+5=1+x2−4x+4x2+2x+5=1+(x−2)2(x+1)2+4≥1A=x2+2x+5+x2−4x+4x2+2x+5=1+x2−4x+4x2+2x+5=1+(x−2)2(x+1)2+4≥1
Dấu "=" xảy ra khi x=2
b) Ta có: \(\dfrac{x-2}{4}=\dfrac{2x+1}{3}\)
\(\Leftrightarrow3\left(x-2\right)=4\left(2x+1\right)\)
\(\Leftrightarrow3x-6=8x+4\)
\(\Leftrightarrow3x-8x=4+6\)
\(\Leftrightarrow-5x=10\)
hay x=-2
Vậy: x=-2
1.
\(x^2-5x+6=0\\ \Rightarrow x^2-2x-3x+6=0\\ \Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
2.
\(\left(x+4\right)^2-\left(3x-1\right)^2=0\\ \Rightarrow\left(x+4-3x+1\right)\left(x+4+3x-1\right)=0\\ \Rightarrow\left(-2x+5\right)\left(4x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}-2x+5=0\\4x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
3.
\(x^2-2x+24=0\\ \Rightarrow\left(x^2-2x+1\right)+23=0\\ \Rightarrow\left(x-1\right)^2+23=0\)
Vì (x-1)2≥0
23>0
\(\Rightarrow\left(x-1\right)^2+23>0\)
Vậy x vô nghiệm
4.
\(9x^2-4=0\\ \Rightarrow\left(3x-4\right)\left(3x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-4=0\\3x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)
5.
\(x^2+2x-8=0\\ \Rightarrow\left(x^2+2x+1\right)-9=0\\ \Rightarrow\left(x+1\right)^2-3^2=0\\ \Rightarrow\left(x-2\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
\(\left(2x-\dfrac{3}{4}\right)^2=\left(3-x\right)^2\)
\(\Rightarrow2x-\dfrac{3}{4}=3-x\)
\(3x=3\dfrac{3}{4}\)
\(x=\dfrac{5}{4}\)
\(-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\\ \Rightarrow-x+2x=\dfrac{3}{5}+\dfrac{4}{7}\\ \Rightarrow x=\dfrac{21}{35}+\dfrac{20}{35}\\ \Rightarrow x=\dfrac{41}{35}\)
Vậy `x=41/35`
__
\(\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow\left(\dfrac{3}{7}-\dfrac{2}{3}\right)x=\dfrac{10}{21}\\ \Rightarrow\left(\dfrac{9}{21}-\dfrac{14}{21}\right)x=\dfrac{10}{21}\\ \Rightarrow\dfrac{-5}{21}x=\dfrac{10}{21}\\ \Rightarrow x=\dfrac{10}{21}:\left(-\dfrac{5}{21}\right)\\ \Rightarrow x=-2\)
Vậy `x=-2`
a)
-4/7 - x = 3/5 - 2x
2x - x = 3/5 + 4/7
x = 41/35
Vậy x = 41/35
b)
3/7.x - 2/3.x = 10/21
x(3/7 - 2/3) = 10/21
x.(-5/21) = 10/21
x = 10/21 : (-5/21) = -2
Vậy x = -2
`x^2 -1-2xy+2y`
`=(x^2-1)-(2xy-2y)`
`=(x-1)(x+1)-2y(x-1)`
`=(x-1)(x+1-2y)`
__
`(x+3)^2-(2x-5)(x+3)`
`=(x+3)(x+3-2x+5)`
`=(x+3)(-x+8)`
__
`(3x+2)^2 +(3x-2)^2-2(9x^2-4)`
`= (3x+2)^2 +(3x-2)^2-2(3x-2)(3x+2)`
`= (3x+2)^2-2(3x-2)(3x+2)+(3x-2)^2`
`=[(3x+2)-(3x-2)]^2`
`=(3x+2-3x+2)^2`
`= 4^2=16`
Bài làm
9x2 = 4( 2x - 3 )2
<=> 9x2 - 22( 2x - 3 )2 = 0
<=> 9x2 - [ 2( 2x - 3 ) ]2 = 0
<=> ( 3x )2 - ( 4x - 6 )2 = 0
<=> ( 3x - 4x + 6 )( 3x + 4x - 6 ) = 0
<=> ( 6 - x )( 7x - 6 ) = 0
<=> \(\orbr{\begin{cases}6-x=0\\7x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{6}{7}\end{cases}}\)
Vậy x = 6 hoặc x = 6/7
\(9x^2=4\left(2x-3\right)^2\)
\(\left(3x\right)^2=\left(4x-6\right)^2\)
\(\left(3x\right)^2-\left(4x-6\right)^2=0\)
\(\left(3x-4x+6\right)\left(3x+4x-6\right)=0\)
\(\left(6-x\right)\left(7x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}6-x=0\\7x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=\frac{6.}{7}\end{cases}}\)