K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 11 2020

\(3p-3⋮3\Rightarrow q\left(p-3\right)⋮3\)

Xét 2 trường hợp: 

\(q⋮3\Rightarrow q=3\)thế vào biểu thức ban đầu ta được \(p-1=p-3\Leftrightarrow0p=2\)(vô nghiệm)

\(p-3⋮3\Rightarrow p⋮3\Rightarrow p=3\)thế vào biểu thức ban đầu ta được \(6=0\)(vô lí)

Vậy phương trình vô nghiệm. 

9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha 

9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha 

16 tháng 4 2017

p=2

=>3p^2+1, 24p^2+1 là số nguyên tố

p>2

mà p là snt

=>p là số lẻ

=>3p^2+1 là số chẵn >2

=>3p^2+1 là hợp số(vô lý)

Vậy p=2

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Câu 5

Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố

Suy ra 3p+7=2(L)

Khí đó p chẵn,mà p là số nguyên tố nên p=2

Vậy p=2

Câu 3

Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)

Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương

Suy ra a-b là số chính phương

Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)

Với a-b=1 mà 0<b<a nên ta có bảng sau:

a23456789
b12345678

Với a-b=4 mà a>b>0 nên ta có bảng sau:

a56789
b12345

Vậy ..............