K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2021

@Nguyễn Việt Lâm giúp em với ạ

10 tháng 9 2019

Chọn  C.

Ta có:

24 tháng 9 2018

Chọn B

14 tháng 12 2020

Ta có: \(2x^2+2x+5=2\left(x^2+x+\dfrac{5}{2}\right)=2\left[x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4}\right]=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

=> \(M=\dfrac{1}{2x^2+2x+5}\le\dfrac{1}{\dfrac{9}{2}}=\dfrac{2}{9}\forall x\)

Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy MaxM=\(\dfrac{2}{9}\) khi x=\(-\dfrac{1}{2}\)

29 tháng 11 2021

\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)

\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)

\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

29 tháng 11 2021

\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)

NV
24 tháng 11 2021

\(y'=\dfrac{-2-m}{\left(x-1\right)^2}.e^{\dfrac{2x+m}{x-1}}\) 

\(\Rightarrow\) Hàm đơn điệu trên miền xác định

TH1: \(\left\{{}\begin{matrix}-2-m< 0\\y\left(2\right)=e^5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\\dfrac{m+4}{1}=5\end{matrix}\right.\) \(\Rightarrow m=1\)

TH2: \(\left\{{}\begin{matrix}-2-m>0\\y\left(4\right)=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -2\\\dfrac{m+8}{3}=5\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Vậy \(m=1\)

19 tháng 12 2016

M=\(\frac{x^2+10x-7}{x^2+2x+1}=\frac{x^2+10x+25-32}{x^2+2x+1}=\frac{\left(x+5\right)^2-32}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{\left(x+5\right)^2-32}{\left(x+1\right)^2}\le-32\)

Vay Max la -32 

Mk cx k chắc lắm đâu .