K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2020

\(x-x^2-2\)

\(=x-\left(x^2+2\right)\)

Ta có : \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge0\)

mà \(x\le x^2\)

\(\Rightarrow x< x^2+2\)

\(\Rightarrow x-\left(x^2+2\right)< 0\)

\(\Rightarrow x-x^2-2< 0\)

19 tháng 11 2020

Ta có: \(x-x^2-2=x-x^2-\frac{1}{4}-\frac{7}{4}\)

\(=\left(x-x^2-\frac{1}{4}\right)-\frac{7}{4}=-\left(x^2-x+\frac{1}{4}\right)-\frac{7}{4}\)

\(=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\frac{7}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)\(\forall x\)

\(\Rightarrow x-x^2-2\le-\frac{7}{4}\)\(\forall x\)

hay \(x-x^2-2< 0\)( đpcm ) 

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

24 tháng 1 2019

8 tháng 1 2017

Biểu thức  x + 1 x 2 xác định khi x  ≠  0

Biểu thức  x 2 + 1 x 2 + 2 x + 1 1 x + 1 xác định khi x  ≠  0 và x  ≠  - 1

Với điều kiện x  ≠  0 và x  ≠  - 1, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy giá trị của biểu thức  x + 1 x 2 : x 2 + 1 x 2 + 2 x + 1 1 x + 1 bằng 1 với mọi giá trị x  ≠  0 và x  ≠  -1.

25 tháng 9 2017

\(-4x^2-4x-2=-\left(4x^2+4x+2\right)=-\left[\left(2x\right)^2+2.2x.1+1+1\right]\)

\(=-\left[\left(2x+1\right)^2+1\right]=-\left(2x+1\right)^2-1\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow-\left(2x+1\right)^2\le0\Rightarrow-\left(2x+1\right)^2-1\le-1< 0\)

Vậy ta có đpcm.

13 tháng 7 2019

\(-4x^2-4x-2=-\left(4x^2+4x+2\right)=-[\left(2x+1\right)^2+1]\)

Ta có \(\left(2x+1^2\right)\ge0\)\(=>-[\left(2x+1\right)^2+1]\le-1< 0\)

Vậy ... 

 Học tốt nha !

30 tháng 10 2021

\(-x^2+8x-19=-\left(x^2-8x+16\right)-3=-\left(x-4\right)^2-3\le-3< 0\)

6 tháng 10 2018

a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)

\(=2\left(x^2-4x+4\right)+5\)

\(=2\left(x-2\right)^2+5\ge5\forall x\)

6 tháng 10 2018

Giả sử trước khi làm nhé 

\(a)\)\(2x^2-8x+13>0\)

\(\Leftrightarrow\)\(4x^2-16x+26>0\)

\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)

\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng ) 

Vậy ... 

\(b)\)\(-2+2x-x^2< 0\)

\(\Leftrightarrow\)\(x^2-2x+2>0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy ... 

Chúc bạn học tốt ~ 

NV
30 tháng 5 2020

\(\Delta=\left(2m-3\right)^2-4\left(m^2-3m\right)=9>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb

Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2m-3-\sqrt{9}}{2}=m-3\\x_2=\frac{2m-3+\sqrt{9}}{2}=m\end{matrix}\right.\)

\(\Rightarrow0< m-3< m< 5\)

\(\Rightarrow3< m< 5\)

a: Δ=(2m+2)^2-4(m-6)

=4m^2+8m+4-4m+24

=4m^2+4m+28

=(2m+1)^2+27>0

=>Phương trình luôn có hai nghiệm phân biệt

c: Để (1) có ít nhất 1 nghiệm dương thì

m-6<0 hoặc (2m+2>0 và m-6>0)

=>m>6 hoặc m<6