K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2020

Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)

\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)

\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)

\(\ge\text{​​}\Sigma\text{​​}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)

\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)

\(=2+ab+bc+ca\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

14 tháng 11 2017

ta có \(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}.\sqrt{ab+2c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}\sqrt{ab+2c^2}}\)

Áp dụng bất đẳng thức cô si ta có 

\(\sqrt{ab+1-c^2}\sqrt{ab+2c^2}\le\frac{1}{2}\left(ab+1-c^2+ab+2c^2\right)=\frac{1}{2}\left(2ab+1+c^2\right)\) 

=\(\frac{1}{2}\left(2ab+a^2+b^2+2c^2\right)=\frac{1}{2}\left[\left(a+b\right)^2+2c^2\right]\le\frac{1}{2}\left(2a^2+2b^2+2c^2\right)=\left(a^2+b^2+c^2\right)\) =1

=> \(\frac{ab+2c^2}{...}\ge\frac{ab+2c^2}{1}=2c^2+ab\)

tương tự + vào thì e sẽ ra điều phải chứng minh

22 tháng 4 2020

Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Áp dụng BĐT AM-GM dạng $x^2+y^2\geq \frac{(x+y)^2}{2}$ ta có:

\(2a^2+ab+2b^2=\frac{4a^2+2ab+4b^2}{2}=\frac{(a+b)^2+3(a^2+b^2)}{2}\geq \frac{(a+b)^2+\frac{3}{2}(a+b)^2}{2}=\frac{5}{4}(a+b)^2\)

\(\Rightarrow \sqrt{2a^2+ab+2b^2}\geq \frac{\sqrt{5}}{2}(a+b)\)

Hoàn toàn tương tự:

\( \sqrt{2b^2+bc+2c^2}\geq \frac{\sqrt{5}}{2}(b+c); \sqrt{2c^2+ac+2a^2}\geq \frac{\sqrt{5}}{2}(a+c)\)

Cộng theo vế:

\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\geq \sqrt{5}(a+b+c)=\sqrt{5}\)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

19 tháng 6 2021

\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sqrt{\dfrac{ab+2c^2}{a^2+b^2+ab}}\)\(=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+c^2+c^2\right)}}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}\)\(=\dfrac{ab+2c^2}{a^2+b^2+c^2}\)

\(\Rightarrow\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}\ge ab+2c^2\)

Tương tự: \(\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\)\(\sqrt{\dfrac{ac+2b^2}{1+ac-b^2}}\ge ac+2b^2\)

Cộng vế với vế \(\Rightarrow VT\ge2a^2+2b^2+2c^2+ab+bc+ac=2+ab+bc+ac\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

19 tháng 6 2021

bạn có thể lm rõ hơn ở chỗ tớ khoanh ko ạ ?

undefined

8 tháng 4 2021

b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)

\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )

mà \(a^2+b^2+c^2\ge ab+bc+ac\)

\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm ) 

9 tháng 5 2021

1.

Điều kiện x \ge \dfrac14x41.

Phương trình tương đương với \left(\sqrt2.\sqrt{2x^2+x+1}-2\right)-\left(\sqrt{4x-1}-1\right)+2x^2+3x-2 = 0(2.2x2+x+12)(4x11)+2x2+3x2=0 \Leftrightarrow \dfrac{4x^2+2x-2}{\sqrt2.\sqrt{2x^2+x+1}+2} - \dfrac{4x-2}{\sqrt{4x-1}+1} + (x+2)(2x-1) = 02.2x2+x+1+24x2+2x24x1+14x2+(x+2)(2x1)=0\\ \Leftrightarrow (2x-1)\left(\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2\right) = 0(2x1)(22x2+x+1+22(x+1)4x1+12+x+2)=0

\Leftrightarrow \left[\begin{aligned} & x =\dfrac12\\ & \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 = 0\\ \end{aligned}\right.x=2122x2+x+1+22(x+1)4x1+12+x+2=0

Với x \ge \dfrac14x41 ta có:

\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} > 022x2+x+1+22(x+1)>0

- \dfrac2{\sqrt{4x-1}+1} \ge -24x1+122

x + 2 > 2x+2>2.

Suy ra \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 > 022x2+x+1+22(x+1)4x1+12+x+2>0.

Vậy phương trình có nghiệm duy nhất x = \dfrac12.x=21.

2.

Đặt P = \dfrac{a^3}{b+2c} + \dfrac{b^3}{c+2a} + \dfrac{c^3}{a+2b}P=b+2ca3+c+2ab3+a+2bc3

Áp dụng bất đẳng thức Cauchy cho hai số dương \dfrac{9a^3}{b + 2c}b+2c9a3 và (b+2c)a(b+2c)a ta có

\dfrac{9a^3}{b+2c} + (b+2c)a \ge 6a^2b+2c9a3+(b+2c)a6a2.

Tương tự \dfrac{9b^3}{c+2a} + (c+2a)b \ge 6b^2c+2a9b3+(c+2a)b6b2\dfrac{9c^3}{a+2b} + (a+2b)c \ge 6c^2a+2b9c3+(a+2b)c6c2.

Cộng các vế ta có 9P + 3(ab+bc+ca) \ge 6(a^2+b^2+c^2)9P+3(ab+bc+ca)6(a2+b2+c2).

Mà a^2+b^2+c^2 \ge ab+bc+ca = 4a2+b2+c2ab+bc+ca=4 nên P \ge 1P1 (ta có đpcm).

30 tháng 8 2021

undefined

30 tháng 8 2021

\(VT=\sqrt{\dfrac{a^2b^2}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{b^2c^2}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{a^2c^2}{b\left(a+b+c\right)+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{ac+ab+bc+c^2}}+\sqrt{\dfrac{b^2c^2}{a^2+ac+ab+bc}}+\sqrt{\dfrac{a^2c^2}{ab+bc+b^2+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2c^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{bc}{a+b}+\dfrac{bc}{a+c}}{2}\\\sqrt{\dfrac{a^2c^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(b+c\right)\left(a+c\right)}}\le\dfrac{\dfrac{ab}{b+c}+\dfrac{ab}{a+c}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ca}{b+c}+\dfrac{ab}{b+c}\right)+\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)}{2}\\ \Rightarrow VT\le\dfrac{a+b+c}{2}=\dfrac{2}{2}=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

27 tháng 4 2020

Bạn xem lại đề nhé! Mình nghĩ đề đúng là:

"a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm Min \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)"

Bạn áp dụng BĐT AM-GM là ra nhé

4 tháng 11 2023

cho mk hỏi bđt AM-GM là gì thế