Chứng minh:(2n+1).(2n+2) chia hết cho 3 với mọi n là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\left(đpcm\right)\)
Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=\left(2n^2-2n^2\right)-\left(3n+2n\right)\)
\(=-5n⋮5\forall n\inℕ\left(đpcm\right)\)
Rất vui vì giúp đc bạn <3
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
n.(n + 1).(2n + 1)
= n.(n + 1).(2n - 2 + 3)
= n.(n + 1).2.(n - 1) + 3n.(n + 1)
Có: n.(n + 1).(n - 1) là tích 3 số nguyên liên tiếp
=> n.(n + 1).(n - 1) chia hết cho 3
=> 2n.(n + 1).(n - 1) chia hết cho 3
Lại có: 3n.(n + 1) chia hết cho 3
=> ...
Đề bài sai !
Vì: Nếu \(n=0\Rightarrow5^{2n+2}+2^{2n+1}=5^{2.0+2}+2^{2.0+1}\)
\(=5^2+2^1\)
\(=27\)không chia hết cho 11 !