K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2020

Ta có\(\frac{x-1}{3}=\frac{y+1}{2}=\frac{z}{5}\Rightarrow\frac{3x-3}{9}=\frac{2y+2}{4}=\frac{z}{5}\)

Áp dụng tính chất day tỉ số bằng nhau ta có 

\(\frac{x-1}{3}=\frac{y+1}{2}=\frac{3x-3}{9}=\frac{2y+2}{4}=\frac{z}{5}=\frac{3x-3+2y+2+z}{9+4+5}=\frac{3x+2y+z-1}{18}\)

                                                                                                                                            \(=\frac{18}{3x+2y+z-1}\)

=> \(\left(3x+2y+z-1\right)^2=18^2\Rightarrow\orbr{\begin{cases}3x+2y+z-1=18\\3x+2y+z-1=-18\end{cases}}\Rightarrow\orbr{\begin{cases}3x+2y+z=19\\3x+2y+z=-17\end{cases}}\)

Khi 3x + 2y +z = 19

=> \(\frac{x-1}{3}=\frac{y+1}{2}=\frac{z}{5}=\frac{18}{19-1}=1\)

=> \(\hept{\begin{cases}x-1=3\\y+1=2\\z=5\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=1\\z=5\end{cases}}\)

Khi 3x + 2y + z = -17

=> \(\frac{x-1}{3}=\frac{y+1}{2}=\frac{z}{5}=\frac{18}{-17-1}=-1\)

Khi đó \(\hept{\begin{cases}x-1=-3\\y+1=-2\\z=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-3\\z=-5\end{cases}}\)

Vậy các cặp (x;y;z)thỏa mãn là (4;1;5) ; (-2;-3;-5)

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

21 tháng 9 2016

a) vì y+z+1/x = x+z+2/y = x+y-3/z = 1/x+y+z

=>

y+z+1/x = x+z+2/y = x+y-3=y+z+1+x+z+2+x+y-3/x+y+z = 2x+2y+2z/x+y+z = 2

=> 2 = 1/ x+y+z => x+y+z=1/2

sau đó áp dụng tính chất dãy tỉ số = hau

25 tháng 10 2017

Mình chỉ cần các bạn trả lời 4 câu nhanh nhất mình sẽ k.

30 tháng 7 2019

a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)

Tương đương : 7x - 21 = 5x + 25

                          7x - 5x = 25 + 21 = 46

                          2x = 46 suy ra : x = 46/2 = 23

 Vậy x = 23

5 tháng 10 2019

1) Ta có: \(\frac{3x}{4}=\frac{2y}{3}=\frac{9z}{7}.\)

=> \(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{7}{9}}\)

=> \(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}\)\(x+2y-3z=18.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}=\frac{x+2y-3z}{\frac{4}{3}+3-\frac{7}{3}}=\frac{18}{2}=9.\)

\(\left\{{}\begin{matrix}\frac{x}{\frac{4}{3}}=9\Rightarrow x=9.\frac{4}{3}=12\\\frac{y}{\frac{3}{2}}=9\Rightarrow y=9.\frac{3}{2}=\frac{27}{2}\\\frac{z}{\frac{7}{9}}=9\Rightarrow z=9.\frac{7}{9}=7\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(12;\frac{27}{2};7\right).\)

Chúc bạn học tốt!

5 tháng 10 2019

Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{2x^3}{16}-\frac{3x^2}{12}+\frac{xyz}{60}=-108\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}=\frac{2x^3-3x^2+xyz}{16-12+60}=-\frac{108}{64}=-\frac{27}{16}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-\frac{27}{16}\Rightarrow x=-\frac{27}{16}.2=-\frac{27}{8}\\\frac{y}{5}=-\frac{27}{16}\Rightarrow y=-\frac{27}{16}.5=-\frac{135}{16}\\\frac{z}{6}=-\frac{27}{16}\Rightarrow z=-\frac{27}{16}.6=-\frac{81}{8}\end{matrix}\right.\)

Vậy...

10 tháng 10 2016

1) Ta có:

\(\frac{1+2y}{18}=\frac{1+4y}{24}\)\(\Rightarrow\left(1+2y\right).24=\left(1+4y\right).18\)

=> 24 + 48y = 18 + 72y

=> 72y - 48y = 24 - 18

=> 24y = 6

\(\Rightarrow y=\frac{6}{24}=\frac{1}{4}\)

Thay \(y=\frac{1}{4}\) vào đề bài ta có:

\(\frac{1+2.\frac{1}{4}}{18}=\frac{1+6.\frac{1}{4}}{6x}\)

\(\Rightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)

\(\Rightarrow\frac{3}{2}.\frac{1}{18}=\frac{5}{2}:6x\)

\(\Rightarrow\frac{1}{12}=\frac{5}{2}:6x\)

\(\Rightarrow6x=\frac{5}{2}:\frac{1}{12}=\frac{5}{2}.12=30\)

=> x = 30 : 6 = 5

Vậy \(x=5;y=\frac{1}{4}\)

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)

                                                                                  \(=\frac{1}{x+y+z}\) (theo đề bài)

\(\Rightarrow x+y+z=\frac{1}{2}\)

Ta có: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=2\)

\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=2+1\)

\(\Rightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=3\)

\(\Rightarrow\frac{\frac{1}{2}+1}{x}=\frac{\frac{1}{2}+2}{y}=\frac{\frac{1}{2}-3}{z}=3\)

\(\Rightarrow\frac{3}{2}:x=\frac{5}{2}:y=\frac{-5}{2}:z=3\)

\(\Rightarrow\begin{cases}x=\frac{3}{2}:3=\frac{1}{2}\\y=\frac{5}{2}:3=\frac{5}{6}\\z=\frac{-5}{2}:3=\frac{-5}{6}\end{cases}\)

Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\) 

 

 

9 tháng 10 2016

/hoi-dap/question/100672.html