K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

pthuộc tập hợp nào bạn ơi

12 tháng 11 2020

TH1: \(p=3\Rightarrow\hept{\begin{cases}2p+1=7\\2p+5=11\end{cases}}\)( 7,11 là số nguyên tố ) (thoả mãn)

TH2: \(p=3k+1\left(k\inℕ^∗\right)\)

\(\Rightarrow2p+1=2\left(3k+1\right)+1=\left(6k+3\right)⋮3\forall k\)( loại)

TH3: \(p=3k+2\left(k\inℕ^∗\right)\)

\(\Rightarrow2p+5=2\left(3k+2\right)+5=\left(6k+9\right)⋮3\forall k\)=> p=3(thoả mãn)

25 tháng 12 2023

Olm.vn sẽ hướng dẫn em giải bằng phương pháp đánh giá em nhé!

Nếu p = 2 \(\Rightarrow\) 2p2 + 1 = 2.22 + 1  = 9 (nhận)

Nếu p = 3 ⇒ 2p2 + 1 = 2.32 + 1 = 19 (loại)

Nếu p > 3 ⇒ p không chia hết cho 3 ⇒ p2 chia 3 dư 1

⇒ 2p2 : 3 dư 2 ⇒ 2p2 + 1 ⋮ 3 (nhận)

Từ những lập luận trên ta có 

        \(\forall\) p \(\ne\)  3; p \(\in\) P thì 2p2 + 1 là hợp số

b,  p + 4 và p + 8 đều là số nguyên tố.

      Nếu p = 2 thì p + 4 =  2 + 4 = 6 loại

     Nếu p  = 3 thì p + 4 = 3 + 4  = 7; p + 8 = 3 + 8  = 11 (nhận)

     Nếu p > 3 ta có: p  không chia hết cho 3 ⇒ p = 3k + 1

     hoặc p = 3k + 2

    th1 : p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 ⋮ 3 (loại)

   th2:  p = 3k + 2  thì p + 4 = 3k + 2 + 4 = 3k + 6 ⋮ 3 (loại)

Từ những lập luận trên ta có p = 3 là giá trị thỏa mãn đề bài

 

25 tháng 10 2020

       Bài làm :

Xét 3 trường hợp :

  • Trường hợp 1: p= 3

⇒2.p+ 1= 7

2.p+ 5= 11 ( thỏa mãn)

  • Trường hợp 2 : p= 3.k+ 1

⇒ 2.p+ 1= 2. ( 3.k+ 1) + 1= 6.k+ 2+ 1= 6.k+ 3= 3. (2.k+ 1) chia hết cho 3 và lớn hơn 3 nên là hợp số

⇒ Loại

  • Trường hợp 3 : p= 3.k+ 2

⇒ 2.p+ 5= 6.k+ 4+ 5= 6.k+ 9= 3. (2.k+ 3) chia hết cho 3 và lớn hơn 3 nên là hợp số

⇒ Loại

Vậy p= 3

27 tháng 11 2021

Giải thích các bước giải:

Trường hợp 1:p=21:p=2

→2p+1=2⋅2+1=5→2p+1=2⋅2+1=5 là số nguyên tố

      2p+5=2⋅2+5=92p+5=2⋅2+5=9 không là số nguyên tố

→p=2→p=2 (loại)

Trường hợp 2:p=32:p=3

→2p+1=2⋅3+1=7→2p+1=2⋅3+1=7 là số nguyên tố

      2p+5=2⋅3+5=112p+5=2⋅3+5=11 là số nguyên tố

→p=3→p=3 (chọn)

Trường hợp 3:p>33:p>3

→p→p chia 33 dư 11 hoặc 22
Nếu pp chia 33 dư 1→p=3k+1,k∈N∗1→p=3k+1,k∈N∗

→2p+1=2(3k+1)+1=6k+3=3(2k+1)⋮3→2p+1=2(3k+1)+1=6k+3=3(2k+1)⋮3

Mà 2p+1>3→2p+12p+1>3→2p+1 là hợp số

→p=3k+1→p=3k+1 (loại)

Nếu pp chia 33 dư 2→p=3k+2,k∈N∗2→p=3k+2,k∈N∗

→2p+5=2(3k+2)+5=6k+9=3(2k+3)⋮3→2p+5=2(3k+2)+5=6k+9=3(2k+3)⋮3

Mà 2p+5>3→2p+52p+5>3→2p+5 là hợp số

→p=3k+2→p=3k+2 (loại)

⇒p>3⇒p>3 loại

12 tháng 11 2023

Với �=2p=25�+2=125p+2=12không là số nguyên tố. 

Với �=3p=32�+1=7,5�+2=172p+1=7,5p+2=17đều là số nguyên tố, thỏa mãn. 

Với �>3p>3: khi đó �=3�+1p=3k+1hoặc �=3�+2p=3k+2với �∈N∗kN.

�=3�+1p=3k+12�+1=2(3�+1)+1=6�+3⋮32p+1=2(3k+1)+1=6k+33mà 2�+1>32p+1>3nên không là số nguyên tố.

�=3�+2p=3k+25�+2=5(3�+2)+2=15�+12⋮35p+2=5(3k+2)+2=15k+123mà 5�+2>35p+2>3nên không là số nguên tố. 

Vậy �=3p=3.

26 tháng 3 2016

vs p=2 bn tu xet nha. vs p=3k+1 thi bn cx tu xet .vs p=3k+2 thi bn cx tu xet vs p=3k ma p la snt nen p=3 khi do bn tu thay vao

26 tháng 3 2016

bẠN tự xét p  có dạng 3k,3k+1,3k+2 nha

thì sẽ được p có dạng 3k thì 2p-1 và 2p+1 là snt

mà p là snt =>p=3

Chứng minh: Ta xét 5 trường hợp: 
+ a = 5k => a^2 = 25k^2, chia 5 dư 0 

+ a = 5k + 1 => a^2 = (5k + 1)^2 = 25k^2 + 10k + 1, chia 5 dư 1 

+ a = 5k + 2 => a^2 = (5k + 2)^2 = 25k^2 + 20k + 4, chia 5 dư 4 

+ a = 5k + 3 => a^2 = (5k + 3)^2 = 25k^2 + 30k + 9, chia 5 dư 4 

+ a = 5k + 4 => a^2 = 25k^2 + 40k + 16, chia 5 dư 1 

Vậy bổ đề được chứng minh 

Trở lại bài toán: Ta có (5^(2p)) + 1997 chia 5 dư 2 

(5^(2p^2)) + q^2 chia 5 dư q^2, áp dụng bổ đề ta được q^2 chia 5 chỉ có thể dư 0, 1 hoặc 4 chứ không thể dư 2 => 2 số (5^(2p))+1997 và (5^(2p^2))+q^2 khi chia cho 5 không bao giờ có cùng số dư, vậy nên chúng không thể bằng nhau 

=> không tồn tại 2 số nguyên tố p và q thỏa mãn yêu cầu bài toán 

p/s: theo lời giải trên ta thấy có thể mở rộng bào toán cho trường hợp p và q là "các số nguyên" chứ không cần là số nguyên tố

11 tháng 6 2019

Xét q=2 thì \(5^{2p}-5^{2p^2}=-1993\)

Dễ thấy vế phải không chia hết cho 5 , vế trái chia hết cho 5 .(vô lí) -> loại.

Xét q=3 thì \(5^{2p}-5^{2p^2}=-1998\)

Dễ thấy vế phải không chia hết cho 5 , vế trái chia hết cho 5 .(vô lí) -> loại.

Xét q>3

Ta có: \(5^{2p}+1997=5^{2p^2}+q^2.\)

\(\Leftrightarrow\left(5^{2p}-1\right)+1996=\left(5^{2p^2}-1\right)+q^2+1\)(1)

Mà p, q là các số nguyên tố \(\Rightarrow5^{2p}-1=25^p-1=\left(25-1\right)\left(25^{p-1}+25^{p-2}+...+25+1\right)⋮24\)(2)

và \(5^{2p^2}-1=25^{p^2}-1=\left(25-1\right)\left(25^{p^2-1}+25^{p^2-2}+...+25+1\right)⋮24.\)(3)

và \(q^2-1=\left(q+1\right)\left(q-1\right)\)

q là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 => \(q=3k+1\)hoặc \(q=3k+2\)(\(k\inℕ^∗\))

Nếu q=3k+1 thì \(q^2-1=\left(3k+1+1\right)\left(3k+1-1\right)=3k\left(3k+2\right)⋮3.\)

Nếu q=3k+2 thì \(q^2-1=\left(3k+2+1\right)\left(3k+2-1\right)=3\left(k+1\right)\left(3k+1\right)⋮3.\)

Như vậy \(q^2-1⋮3\)(4)

Từ (1) , (2), (3), (4) suy ra; 1996 chia hết cho 3 (vô lí).

Vậy không có số nguyên tố p, q nào thỏa mãn đề bài