Cho x+y+z=0.Tính Q=(1+\(\frac{x}{y}\)).(1+\(\frac{y}{z}\) ).(1+\(\frac{z}{x}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}\)\(=\frac{-\left(x+y+z\right)}{x+y+z}\)
Nếu \(x+y+z=0\)thì \(\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}\)
\(=\frac{-z}{x}.\frac{-x}{y}.\frac{-y}{z}=-1\)
Nếu \(x+y+z\ne0\)thì \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=-1\)
suy ra: \(\frac{x-y-z}{x}=-1\) \(\Rightarrow\) \(x-y-z=-x\) \(\Rightarrow\) \(y+z=2x\)
\(\frac{-x+y-z}{y}=-1\) \(-x+y-z=-y\) \(x+z=2y\)
\(\frac{-x-y+z}{z}=-1\) \(-x-y+z=-z\) \(x+y=2z\)
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{x+z}{z}\)
\(=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
+ Nếu x + y + z = 0 => x + y = -z; y + z = -x; x + z = -y
A = (1 + y/x)(1 + z/y)(1 + x/z)
A = (x+y)/x . (y+z)/y . (x+z)/z
A = -z/x . (-x)/y . (-y)/z = -1
+ Nếu x + y + z khác 0
x-y-z/x = -x+y-z/y = -x-y+z/z
<=> 1 - (y+z)/x = 1 - (x+z)/y = 1 - (x+y)/z
<=> y+z/x = x+z/y = x+y/z
Áp dụng t/c của dãy tỉ số = nhau ta có:
y+z/x = x+z/y = x+y/z = 2(x+y+z)/x+y+z = 2
A = (x+y)/x . (y+z)/y . (x+z)/z = 8
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(\Rightarrow x=y=z\)
\(\Rightarrow\frac{x}{y}=1;\frac{y}{z}=1;\frac{x}{z}=1\)
\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x-y-z}{x}=\frac{y-x-z}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-x-z+z-x-y}{x+y+z}=\frac{-x-y-z}{x+y+z}=-1\)
\(\rightarrow\begin{cases}x-y-z=-x\\y-x-z=-y\\z-x-y=-z\end{cases}\)
\(\leftrightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)
\(A=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1 ta có x+y+z=0 suy ra y+z=-x
(-x)2=x2=(y+z)2=y2+2yz+z2
suy ra
\(\frac{1}{y^2+z^2-x^2}=\frac{1}{-2yz}\)
tương tự ta có \(\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{-1}{2}\left(\frac{x+z+y}{xyz}\right)=\frac{-1}{2}\left(\frac{0}{xyz}\right)\)
bài 2 bạn ghi đề không rõ ràng nên mình không giải
Tại sao lại \(\frac{1}{y^2+z^2-x^2}\)=\(\frac{1}{-2yz}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x+y-2014z}{z}=\frac{y+z-2014x}{x}=\frac{z+x-2014y}{y}=\frac{\left(-2012\right)\left(x+y+z\right)}{x+y+z}=-2012\)
Ta có: \(\frac{x+y-2014z}{z}=-2012\Rightarrow x+y-2014z=-2012z\Leftrightarrow x+y=2z\)
Tương tự: \(y+z=2x,z+x=2y\)
Khi đó: \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{2x.2y.2z}{xyz}=8\)
Vậy A=8.
Nguyễn Tất Đạt thiếu 1 trường hợp nha bạn
\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x=-y-z\\y=-x-z\\z=-x-y\end{cases}}\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=\left(-\frac{z}{y}\right).\left(\frac{-x}{z}\right).\left(\frac{-y}{x}\right)=-1\)
Ta có x + y + z = 0
=> x + y = -z
y + z = -x
x + z = -y
Khi đó Q = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z}{y}.\frac{-x}{y}.\frac{.-y}{x}=-1\)
Vậy khi x + y + z = 0 thì Q = -1
ta có
\(Q=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)