K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

\(x+2y=3\Rightarrow x=3-2y\Rightarrow A=\left(2y-3\right)^2+2y^2=4y^2-12y+9+2y^2=6y^2-12y+9\)

\(A=3\left(3y^2-4y+3\right)=3\left[\left(y\sqrt{3}\right)^2-2.y\sqrt{3}.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{5}{3}\right]=3\left(y\sqrt{3}-\frac{2}{\sqrt{3}}\right)^2+5\ge5\)

Dấu = xảy ra khi \(y=\frac{2}{3}\Rightarrow x=\frac{5}{3}\)

21 tháng 10 2023

a: A=(x-1)(x-3)(x2-4x+5)

\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)

\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)

\(=\left(x^2-4x+4\right)^2-1\)

\(=\left(x-2\right)^4-1>=-1\)

Dấu = xảy ra khi x-2=0

=>x=2

b: \(B=x^2-2xy+2y^2-2y+1\)

\(=x^2-2xy+y^2+y^2-2y+1\)

\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)

Dấu = xảy ra khi x-y=0 và y-1=0

=>x=y=1

c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)

\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)

\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)

\(=-\left(x^2+5x\right)^2+36+5\)

\(=-\left(x^2+5x\right)^2+41< =41\)

Dấu = xảy ra khi \(x^2+5x=0\)

=>x(x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

17 tháng 4 2017

Đáp án C.

Ta có:

G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.

Xét hàm số

f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên ℝ  suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1

⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1  

Ta có:  T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .

12 tháng 11 2019

Đáp án C.

Ta có: GT

<=> 5x+2y + x + 2y – 3–x–2y = 5xy–1 – 31–xy + xy – 1.

X é t   h à m   s ố   f t = 5 t + t - 3 - t

⇒ f t = 5 t ln 5 + 1 + 3 - t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên  ℝ suy ra

f(x+2y) = f(xy – 1) <=> x+ 2y = xy – 1

⇔ x = 2 y + 1 y - 1 ⇒ T = 2 y + 1 y - 1 + y .

Do x > 0 => y > 1.

Ta có:

T = 2 + y + 3 y - 1 = 3 + y - 1 + 3 y - 1 ≥ 3 + 2 3 .

29 tháng 8 2017

Ta có : A = x2 + 3x + 3 

=> A = x+ 3x + \(\frac{9}{4}+\frac{3}{4}\)

\(\Rightarrow A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\in R\)

Vậy Amin = \(\frac{3}{4}\) khi \(x=-\frac{3}{2}\)

29 tháng 4 2018

Áp dụng BĐT  Bunyakovsky  ta có:

    \(\left(x+2y\right)^2=\left(x+\sqrt{2}.\sqrt{2}y\right)^2\le\left(1^2+\sqrt{2}^2\right)\left[x^2+\left(\sqrt{2}y\right)^2\right]\)

\(\Leftrightarrow\)\(\left(x+2y\right)^2\le3\left(x^2+2y^2\right)\)

\(\Leftrightarrow\)\(1\le3\left(x^2+2y^2\right)\) (do  x + 2y = 1 )

\(\Leftrightarrow\)\(x^2+2y^2\ge\frac{1}{3}\)

Dấu "="  xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+2y=1\\\frac{1}{x}=\frac{\sqrt{2}}{\sqrt{2}y}\end{cases}}\)\(\Leftrightarrow\)\(x=y=\frac{1}{3}\)

Vậy  \(Min\)\(A=\frac{1}{3}\) \(\Leftrightarrow\)\(x=y=\frac{1}{3}\)

P/s: tham khảo thôi nhé, mk ko chắc đúng (yếu phần cực trị)

2 tháng 3 2020

\(x^2+2y^2=\left(x+2y\right)^2\) mà \(x+2y=1=>\left(x+2y\right)^2=1^2=1\)

vậy A=1

NV
31 tháng 8 2021

Đặt \(x+2y+1=a\)

\(P=a^2+\left(a+4\right)^2=2a^2+8a+16=2\left(a+2\right)^2+8\ge8\)

10 tháng 4 2023

dấu bằng xảy ra khi?

NV
19 tháng 8 2021

\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)

\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)

25 tháng 12 2020

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)