x*(x-2)(x+2)(x+4)+16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)\)
\(=x^4-16\)
b: Ta có:\(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\)
Bài 1:
Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+1\right)\left(x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x\left(x^2+4x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x^3-4x^2-3x+3x^2=0\)
\(\Leftrightarrow-x^2-3x+64=0\)
\(\Leftrightarrow x^2+3x-64=0\)
\(\text{Δ}=3^2-4\cdot1\cdot\left(-64\right)=265\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{265}}{2}\\x_2=\dfrac{-3+\sqrt{265}}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
![](https://rs.olm.vn/images/avt/0.png?1311)
`#040911`
a,
\(\dfrac{1}{2}\cdot\left(x-4\right)-\dfrac{1}{4}\cdot\left(x-\dfrac{4}{3}\right)=2\cdot\left(x-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}x-2-\dfrac{1}{4}x+\dfrac{1}{3}=2x-1\\\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{4}x-2x\right)=2-\dfrac{1}{3}-1\\ \Rightarrow-\dfrac{7}{4}x=\dfrac{2}{3}\\ \Rightarrow x=\dfrac{2}{3}\div\left(-\dfrac{7}{4}\right)\\ \Rightarrow x=-\dfrac{8}{21}\)
Vậy, \(x=-\dfrac{8}{21}\)
b,
\(\dfrac{3}{4}-\left(x-\dfrac{1}{2}\right)^2=-\dfrac{11}{2}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{3}{4}-\left(-\dfrac{11}{2}\right)\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{25}{4}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\left(\pm\dfrac{5}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}+\dfrac{1}{2}\\x=-\dfrac{5}{2}+\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, \(x\in\left\{-2;3\right\}\)
c,
\(\dfrac{3}{16}+1\dfrac{1}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\\ \Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\div\dfrac{17}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{17}\)
Bạn xem lại đề có sai kh nhỉ?
c) \(\dfrac{3}{16}+\dfrac{1}{\dfrac{1}{16}}\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}:16\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{256}=\left(\dfrac{3}{16}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{3}{16}\\x-\dfrac{2}{3}=-\dfrac{3}{16}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{16}+\dfrac{2}{3}\\x=-\dfrac{3}{16}+\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{48}\\x=\dfrac{23}{48}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tính ngoặc tròn
\(4\cdot8-16\cdot2\)
\(=32-32\)
\(=0\)
Vậy tích trên bằng 0 ( vì có 1 thừa số = 0 )
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu d đề có đúng ko bn
mk thấy hơi sai Nguyen Thi tuong Vi
![](https://rs.olm.vn/images/avt/0.png?1311)
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
Đặt \(A=x\left(x-2\right)\left(x+2\right)\left(x+4\right)+16\)
\(\Rightarrow A=x\left(x+2\right)\left(x-2\right)\left(x+4\right)+16\)
\(=\left(x^2+2x\right)\left(x^2+2x-8\right)+16\)
Đặt \(x^2+2x-4=t\)
\(\Rightarrow A=\left(t+4\right)\left(t-4\right)+16\)
\(=t^2-16+16=t^2=\left(x^2+2x-4\right)^2\)