K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2020

Áp dụng BĐT Cauchy ta có: \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

7 tháng 11 2020

Bổ sung điều kiện a,b,c > 0

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Đẳng thức xảy ra <=> a = b = c

20 tháng 3 2018

dự đoán của Thần thánh

\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)

\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)

áp dụng BDT cô si ta có

\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)

tương tự với các BDT còn lại suy ra

\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si ta có

\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)

tương tự với b^2+c^2 ta được

\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) 

" thay 1/3 vào ta được

\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)

mà \(a+b+c\ge3\sqrt[3]{abc}\) 

thay a+b+c=1 vào ta được

\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "

bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)

\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)

mà a+b+C=1 suy ra

\(A\ge\frac{9}{4}\) "2"

từ 1 và 2 suy ra

\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

" đúng với dự đoán của thần thánh "

24 tháng 10 2020

a) Bổ đề: \(x^3+y^3\ge xy\left(x+y\right)\forall x,y>0\)

\(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge\frac{ab\left(a+b\right)}{ab}+\frac{bc\left(b+c\right)}{bc}+\frac{ca\left(c+a\right)}{ca}=2\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

24 tháng 10 2020

Cảm ơn bạn nhiều nhé Nhật Pháp soi chiếu thế gian. Nếu có thể, mong bạn hãy giúp mình những phần còn lại ^^

3 tháng 2 2017

anh kết bạn với trương tuẫn nghĩa trên fb.bạn ấy lớp 8 trường ams nhưng làm tốt lớp 9 anh ạ.hỏi bạn ấy

5 tháng 2 2017

camon ^_^

3 tháng 1 2016

Ai biết thì giúp dùm với, làm ơn

26 tháng 2 2019

đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0

Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0

Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng

26 tháng 2 2019

khoannnnnnnn, bn: Lê Hồ Trọng Tín ơi:

nếu a=1,b=2,c=1,d=1 thì: \(\frac{1}{2+1+1}=\frac{1}{4}-\frac{1}{3}\ge0???\)

mọe, t-i-k đúng nhầm :(((

NV
29 tháng 2 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

18 tháng 2 2020

Giúp mình với

12 tháng 4 2020

Chứng minh gì vậy bạn

25 tháng 8 2017

Ta có BĐT \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

Nên BĐT cần chứng minh là 

\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{3}{2}\)

Đặt \(\hept{\begin{cases}a^2=x\\b^2=y\\c^2=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+y+z=3\\x,y,z>0\end{cases}}\)

Áp dụng BĐT AM-GM and Cauchy-Schwarz ta có:

\(Σ\frac{a^2}{a+b^2}=Σ\frac{x}{\sqrt{x}+y}=Σ\frac{x}{\sqrt{\frac{x\left(x+y+z\right)}{3}+y}}\)

\(=Σ\frac{6x}{2\sqrt{3x\left(x+y+z\right)}+6y}\geΣ\frac{6x}{3x+x+y+z+6y}=Σ\frac{6x}{4x+7y+z}\)

\(=Σ\frac{6x^2}{4x^2+7xy+xz}\ge\frac{6\left(x+y+z\right)^2}{Σ\left(4x^2+7xy+xz\right)}=\frac{3}{2}\)

-Nguồn : Xem câu hỏi