CMR: \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Các bạn giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dự đoán của Thần thánh
\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)
\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)
áp dụng BDT cô si ta có
\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)
tương tự với các BDT còn lại suy ra
\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si ta có
\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)
tương tự với b^2+c^2 ta được
\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
" thay 1/3 vào ta được
\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)
mà \(a+b+c\ge3\sqrt[3]{abc}\)
thay a+b+c=1 vào ta được
\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "
bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)
\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)
mà a+b+C=1 suy ra
\(A\ge\frac{9}{4}\) "2"
từ 1 và 2 suy ra
\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)
" đúng với dự đoán của thần thánh "
a) Bổ đề: \(x^3+y^3\ge xy\left(x+y\right)\forall x,y>0\)
\(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge\frac{ab\left(a+b\right)}{ab}+\frac{bc\left(b+c\right)}{bc}+\frac{ca\left(c+a\right)}{ca}=2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Cảm ơn bạn nhiều nhé Nhật Pháp soi chiếu thế gian. Nếu có thể, mong bạn hãy giúp mình những phần còn lại ^^
anh kết bạn với trương tuẫn nghĩa trên fb.bạn ấy lớp 8 trường ams nhưng làm tốt lớp 9 anh ạ.hỏi bạn ấy
đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0
Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0
Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
Ta có BĐT \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)
Nên BĐT cần chứng minh là
\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{3}{2}\)
Đặt \(\hept{\begin{cases}a^2=x\\b^2=y\\c^2=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+y+z=3\\x,y,z>0\end{cases}}\)
Áp dụng BĐT AM-GM and Cauchy-Schwarz ta có:
\(Σ\frac{a^2}{a+b^2}=Σ\frac{x}{\sqrt{x}+y}=Σ\frac{x}{\sqrt{\frac{x\left(x+y+z\right)}{3}+y}}\)
\(=Σ\frac{6x}{2\sqrt{3x\left(x+y+z\right)}+6y}\geΣ\frac{6x}{3x+x+y+z+6y}=Σ\frac{6x}{4x+7y+z}\)
\(=Σ\frac{6x^2}{4x^2+7xy+xz}\ge\frac{6\left(x+y+z\right)^2}{Σ\left(4x^2+7xy+xz\right)}=\frac{3}{2}\)
-Nguồn : Xem câu hỏi
Áp dụng BĐT Cauchy ta có: \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Bổ sung điều kiện a,b,c > 0
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Đẳng thức xảy ra <=> a = b = c