cho \(a^2+b^2+c^2=ab+bc+ac\) CMR:a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\)
\(a^2+b^2+c^2-ab-ac-bc=0\)
\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
biet ab+bc+ca=1CMR (a^2+1)(b^2+1)/(c^2+1)+(b^2+1)(c^2+1)/(a^2+1)+(a^2+1)(b^2+1)/(c^2+1) la binh phuong 1 so huu ti
\(a^3+b^3+c^3-3abc\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-\left(3a^2b+3ab^2+3abc\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)\(\left(đpcm\right)\)
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
https://diendan.hocmai.vn/threads/tim-gtnn-a-f-14-a-2-b-2-c-2-dfrac-ab-bc-ca-a-2b-b-2c-c-2a.311642/
Bai lam chac tuong tu
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\), \(\left(b-c\right)^2\ge0\), \(\left(c-a\right)^2\ge0\)\(\forall a,b,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
Vậy \(a=b=c\)( đpcm )
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Ta có : ( a - b )2 ≥ 0 ∀ a, b ; ( b - c )2 ≥ 0 ∀ b, c ; ( c - a )2 ≥ 0 ∀ c, a
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Dấu "=" xảy ra khi và chỉ khi a = b = c ( đpcm )