K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

\(\frac{1}{20}\cdot\frac{1}{30}\cdot\frac{1}{42}\cdot\frac{1}{56}\cdot\frac{1}{72}\cdot\frac{1}{90}\)

\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{4}-\frac{1}{10}\)

\(=\frac{6}{40}=\frac{3}{20}\)

\(\frac{1}{40}\)x\(\frac{1}{30}\)x\(\frac{1}{20}\)x\(\frac{1}{12}\)x\(\frac{1}{6}\)x\(\frac{1}{2}\)

\(\frac{1}{40.30.20.12.6.2}\)

\(\frac{1}{3456000}\)

k mik nha! (kb nhé!!!)

13 tháng 11 2021

Vì M là trung điểm SQ và KH nên SHQK là hbh

Mà SH là đg cao nên \(\widehat{SHQ}=90^0\)

Vậy SHQK là hcn

13 tháng 11 2021

hình nx ạbucminh

24 tháng 12 2023

a: Xét ΔOSB có OS=OB=BS(=R)

nên ΔOSB đều

=>\(\widehat{SBO}=60^0\)

Xét (O) có

MS,MQ là các tiếp tuyến

Do đó: MS=MQ
=>M nằm trên đường trung trực của SQ(1)

ta có: OS=OQ

=>O nằm trên đường trung trực của SQ(2)

Từ (1) và (2) suy ra MO là đường trung trực của SQ

=>MO\(\perp\)SQ tại H và H là trung điểm của SQ

Ta có: ΔSOB đều

mà SH là đường cao

nên H là trung điểm của OB

Xét tứ giác OSBQ có

H là trung điểm chung của OB và SQ

=>OSBQ là hình bình hành

Hình bình hành OSBQ có OS=OQ

nên OSBQ là hình thoi

=>\(\widehat{SBQ}+\widehat{OSB}=180^0\)

=>\(\widehat{SBQ}=120^0\)

Xét ΔBSQ có \(cosSBQ=\dfrac{BS^2+BQ^2-SQ^2}{2\cdot BQ\cdot BS}\)

=>\(\dfrac{R^2+R^2-SQ^2}{2\cdot R\cdot R}=cos120=-\dfrac{1}{2}\)

=>\(2R^2-SQ^2=-R^2\)

=>\(SQ^2=3R^2\)

=>\(SQ=R\sqrt{3}\)