K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:

PT $\Leftrightarrow 1-2\sin ^2x+4(1-\sin ^2x)=9-11\sin x$

$\Leftrightarrow 6\sin ^2x-11\sin x+4=0$

$\Leftrightarrow (3\sin x-4)(2\sin x+1)=0$

$\Rightarrow \sin x=\frac{4}{3}$ hoặc $\sin x=\frac{-1}{2}$

Với $\sin x=\frac{4}{3}$ hiển nhiên loại vì $\sin x\in [-1;1]$

Với $\sin x=-\frac{1}{2}\Rightarrow x=2k\pi +\frac{\pi}{6}$ hoặc $x=2k\pi+\frac{5\pi}{6}$ với $k$ nguyên.

12 tháng 1 2022

70.Zn+ 2HCl -> ZnCl2 + H2

     0.1                              0.1

nZn = 0.1 mol

\(V_{H2}=0.1\times22.4=2.24l\) => Chọn A

71.Cu không tác dụng với HCl => chọn D

72.Ag không tác dụng với HCl => chọn A

 

12 tháng 1 2022

a-d-a

\(=\dfrac{2^4\cdot5^4\cdot3^6}{2^8\cdot3^4}=3^2\cdot5^4\cdot\dfrac{1}{2^4}\)

NV
22 tháng 3 2022

19.

\(f\left(x\right)=x^2\left(3-2x\right)=x.x.\left(3-2x\right)\le\left(\dfrac{x+x+3-2x}{3}\right)^3=1\)

\(\Rightarrow\max\limits_{\left[0;\dfrac{3}{2}\right]}f\left(x\right)=1\)

20.

\(f\left(x\right)< 0;\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

21.

A là đáp án đúng, do đa thức \(f\left(x\right)=-2x^2+3x-4\) có:

\(\left\{{}\begin{matrix}a=-2< 0\\\Delta=3^2-4.\left(-2\right).\left(-4\right)=-23< 0\end{matrix}\right.\)

22.

ĐKXĐ: \(4-x^2\le0\Rightarrow\left(2-x\right)\left(2+x\right)\le0\)

\(\Rightarrow-2\le x\le2\Rightarrow D=\left[-2;2\right]\)

23.

\(f\left(x\right)>0;\forall x\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(2m-3\right)^2-\left(4m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow4m^2-16m+12< 0\)

\(\Rightarrow1< m< 3\)

13 tháng 11 2021

2: Thay x=1 và y=-4 vào (d), ta được:

2m+2=-4

hay m=-3

NV
23 tháng 3 2022

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x-2}+1}{\sqrt[]{x+3}-2}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{x-2}+1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)\left(\sqrt[]{x+3}+2\right)}{\left(\sqrt[]{x+3}-2\right)\left(\sqrt[]{x+3}+2\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(\sqrt[]{x+3}+2\right)}{\left(x-1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x+3}+2}{\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1}\)

\(=\dfrac{\sqrt[]{1+3}+2}{\sqrt[3]{\left(1-2\right)^2}-\sqrt[3]{1-2}+1}=\dfrac{4}{3}\)

23 tháng 3 2022

em cảm ơn ạ

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

Bài 5:

a: 2x-(3-5x)=4(x+3)

=>2x-3+5x=4x+12

=>7x-3=4x+12

=>3x=15

=>x=5

b: =>5/3x-2/3+x=1+5/2-3/2x

=>25/6x=25/6

=>x=1

c: 3x-2=2x-3

=>3x-2x=-3+2

=>x=-1

d: =>2u+27=4u+27

=>u=0

e: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

=>x=1/7

f: =>-90+12x=-45+6x

=>12x-90=6x-45

=>6x-45=0

=>x=9/2