K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

Lời giải:

ĐK:..................

PT \(\Leftrightarrow \tan x+\frac{1}{\tan x}+\frac{2}{\tan 2x}(1-2\cos x)=2\)

\(\Leftrightarrow \frac{\tan ^2x+1}{\tan x}+\frac{1-\tan ^2x}{\tan x}(1-2\cos x)=2\)

\(\Leftrightarrow \tan ^2x+1+(1-\tan ^2x)(1-2\cos x)=2\tan x\)

\(\Leftrightarrow (\tan x-1)^2-(\tan x-1)(\tan x+1)(1-2\cos x)=0\)

\(\Leftrightarrow (\tan x-1)[\tan x-1-(\tan x+1)(1-2\cos x)]=0\)

Nếu $\tan x-1=0$ thì $x=k\pi +\frac{\pi}{4}$

Nếu $\tan x-1-(\tan x+1)(1-2\cos x)=0$

$\Leftrightarrow (\tan x+1)\cos x=1$

$\Leftrightarrow (\frac{\sin x}{\cos x}+1)\cos x=1$

$\Leftrightarrow \sin x+\cos x=1$

$\Rightarrow (\sin x+\cos x)^2=1$

$\Leftrightarrow 1+2\sin x\cos x=1$

$\Leftrightarrow \sin x\cos x=0$ (trái điều kiện xác định)

Vậy...............

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:

ĐK:..................

PT \(\Leftrightarrow \tan x+\frac{1}{\tan x}+\frac{2}{\tan 2x}(1-2\cos x)=2\)

\(\Leftrightarrow \frac{\tan ^2x+1}{\tan x}+\frac{1-\tan ^2x}{\tan x}(1-2\cos x)=2\)

\(\Leftrightarrow \tan ^2x+1+(1-\tan ^2x)(1-2\cos x)=2\tan x\)

\(\Leftrightarrow (\tan x-1)^2-(\tan x-1)(\tan x+1)(1-2\cos x)=0\)

\(\Leftrightarrow (\tan x-1)[\tan x-1-(\tan x+1)(1-2\cos x)]=0\)

Nếu $\tan x-1=0$ thì $x=k\pi +\frac{\pi}{4}$

Nếu $\tan x-1-(\tan x+1)(1-2\cos x)=0$

$\Leftrightarrow (\tan x+1)\cos x=1$

$\Leftrightarrow (\frac{\sin x}{\cos x}+1)\cos x=1$

$\Leftrightarrow \sin x+\cos x=1$

$\Rightarrow (\sin x+\cos x)^2=1$

$\Leftrightarrow 1+2\sin x\cos x=1$

$\Leftrightarrow \sin x\cos x=0$ (trái điều kiện xác định)

Vậy...............

26 tháng 9 2019

Điều kiện Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11

      tanx – 2.cotx + 1 = 0

Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (Thỏa mãn điều kiện).

Vậy phương trình có tập nghiệm

{Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 + kπ; arctan(-2) + kπ} (k ∈ Z)

10 tháng 10 2018

câu 1

\(\dfrac{cosx}{sinx}\) - \(\dfrac{sinx}{cosx}\) -\(\dfrac{2cos4x}{2sinxcosx}\) =0

\(\dfrac{cos^2x-sin^2x}{sinx.cosx}\) -\(\dfrac{cos4x}{sinx.cosx}\)= 0

\(\dfrac{cos2x-cos4x}{sinx.cosx}\) = 0

\(\left[{}\begin{matrix}cos2x=cos4x\\sin2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4x+k2\pi\\2x=-4x+k2\pi\\2x=k\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-k\pi\\x=\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\) (k∈ Z)

10 tháng 10 2018

câu 2 dùng công thức biến đổi tích thành tổng thành cos 4x + cos 2x sau đó phương trình trở thành sin x - cos 4x=0

NV
18 tháng 7 2021

ĐKXĐ: \(x\ne k\dfrac{\pi}{2}\)

\(tanx+\dfrac{1}{tanx}=2\)

\(\Rightarrow tan^2x+1=2tanx\)

\(\Leftrightarrow\left(tanx-1\right)^2=0\)

\(\Leftrightarrow tanx=1\)

\(\Rightarrow x=\dfrac{\pi}{4}+k\pi\) (thỏa mãn)

16 tháng 1 2018

Đáp án D

ĐK: sin 2 x ≠ 0 .

Khi đó:

Do đó có 4 điểm x = ± π 3 ; x = 2 π 3 ; x = 4 π 3  biểu diễn nghiệm của PT đã cho.

11 tháng 12 2017

Đối với những phương trình lượng giác chứa tanx, cotx, sin2x hoặc cos2x, ta có thể đưa về phương trình chứa cosx, sinx, sin2x, hoặc cos2x ngoài ra cũng có thể đặt ẩn phụ t = tanx để đưa về một phương trình theo t.

Cách 1: Điều kiện của phương trình:

sin2x ≠ 0 ⇔ cos2x ≠ 1 hoặc cos2x ≠ -1 (1)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Cách 2. Đặt t = tanx

Điều kiện t ≠ 0

Phương trình đã cho có dạng

Giải sách bài tập Toán 11 | Giải sbt Toán 11

23 tháng 4 2017

Điều kiện của phương trình: sinx ≠ 0, cos ≠ 0, tan ≠ -1.

Biến đổi tương đương đã cho, ta được

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Phương trình (2) vô nghiệm vì |sin2x + cos2x| ≥ √2.

Phương trình (1) có nghiệm 2x = π/2+kπ,k ∈ Z

⇒ x = π/4+ k π/2,k ∈ Z.

 

Giá trị x = π/4+ k π/2, k = 2n + 1,

với n ∈ Z bị loại do điều kiện tanx ≠ -1.

16 tháng 7 2017

cotx - cot2x = tanx + 1 (1)

Điều kiện: sinx ≠ 0 và cosx ≠ 0. Khi đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

23 tháng 6 2021

Pt vô nghiệm