Tìm GTNN của bt P=\(\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\left(x>0,x\ne1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\left(\sqrt{x}-\sqrt{y}\right)}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}-x+2\sqrt{xy}-y\)
\(=3\sqrt{xy}\)
b) \(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-y}{\sqrt{y}-1}.\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-y\right)\left(\sqrt{y}-1\right)}{\left(x-1\right)^2}\)
a) \(=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=x+\sqrt{xy}+y-x+2\sqrt{xy}-y=3\sqrt{xy}\)
Chào em, em có thể kam khảo tại link:
Câu hỏi của Lê Thu Hà - Toán lớp 9 - Học toán với OnlineMath
Nếu link bị chặn em copy và dán tại:
https://olm.vn/hoi-dap/question/1261852.html
Câu hỏi của Lê Thu Hà - Toán lớp 9 - Học toán với OnlineMath
a) Rút gọn E
\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-\sqrt{x}}{x-\sqrt{x}}\right)\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}-\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\div\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(E=\frac{x}{\sqrt{x}-1}\)
Vậy \(E=\frac{x}{\sqrt{x}-1}\)
\(B=\frac{-2a\sqrt{a}+2a^2}{\left(\sqrt{a}-\right)\left(a-1\right)}\)
\(C=-x\sqrt{x}+x+\sqrt{x}-1\)
\(D=x-\sqrt{x}+1\)
\(E=\frac{x}{\sqrt{x}-1}=\frac{x-1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\)
Vì x>1 nên \(\sqrt{x}-1>0\Rightarrow\frac{1}{\sqrt{x}-1}>0\)
Áp dụng BĐT Cô-si cho 2 số dương ta được:
\(\left(\sqrt{x}-1\right)+\frac{1}{\sqrt{x}-1}\ge2\)
\(\Rightarrow E\ge2+2=4\)
Dấu "=" xảy ra khi \(\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\Leftrightarrow x=4\)
Vậy .....
\(E=\sqrt{x}+1+\frac{1}{\sqrt{x}-1}\)
Với x nguyên,để A nguyên thì: \(\frac{1}{\sqrt{x}-1}\)nguyên \(\Rightarrow\sqrt{x}-1\)là ước của \(1\)
Mà \(\sqrt{x}-1>0\)nên \(\sqrt{x}-1=1\Rightarrow x=4\)
vậy để E nguyên thì x=4
a: \(P=\left(\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1+\sqrt{x}}{x+1}\)
\(=\dfrac{2\sqrt{x}+x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x+\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
b: Thay \(x=9+2\sqrt{7}\) vào P, ta được:
\(P=\dfrac{\sqrt{9+2\sqrt{7}}+1}{9+2\sqrt{7}+\sqrt{9+2\sqrt{7}+1}}\simeq0,25\)
\(A=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\div\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\)
\(A=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(A=\frac{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{-\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{-\sqrt{x}-x}{x}\)