kết quả rút gọn của biểu thức P = \(\sqrt{\frac{x^2-4x+4}{2-x}}\) ( x \(\ne\)2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) P = \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}+2}\right)\)\(.\)\(\frac{x-4}{\sqrt{4x}}\)
= \(\frac{\sqrt{x}.\left(\sqrt{x}+2\right)+\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(.\)\(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{4x}}\)
= \(\frac{x+2\sqrt{x}+x-2\sqrt{x}}{\sqrt{4x}}\)
= \(\frac{2x}{2\sqrt{x}}\)= \(\sqrt{x}\)
b) x = \(3-2\sqrt{2}\)=\(2-2\sqrt{2}+1\)= \(\left(\sqrt{2}-1\right)^2\)
Thay x = \(\left(\sqrt{2}-1\right)^2\) vào P ta được
P = \(\sqrt{\left(\sqrt{2}-1\right)^2}\)= \(\sqrt{2}-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{\sqrt{x^2}}{\sqrt{y^4}}=\frac{y}{x}\cdot\frac{\left|x\right|}{\left|y^2\right|}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)( x > 0 ; y > 0 )
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(M=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\) (ĐK : \(\forall x\in R\))
\(=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)
* Nếu x\(\ge2\Rightarrow M=x-2-x-2=-4\)
*Nếu x<2 => M=2-x-x-2=-2x
b,Để M=2\(\ne-4\)
=>M=-2x
=>-2x=-4
=>x=2
__________________________________________________________________________________________
P=\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
* Nếu \(x\ge2\Rightarrow P=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)
* Nếu x<2 =>P=\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
VẬY.......
Tk nha!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{x}{y}.\frac{x}{y^2}=\frac{x^2}{y^3}\left(\text{vì }x>0;y< 0\text{ nên: }\frac{x}{y^2}>0\right)\)
\(A=\frac{x}{y}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{x}{y}\cdot\frac{\sqrt{x^2}}{\sqrt{y^4}}=\frac{x}{y}\cdot\frac{\left|x\right|}{\left|y^2\right|}=\frac{x}{y}\cdot\frac{x}{y^2}=\frac{x^2}{y^3}\)( x > 0 ; y < 0 )
\(P=\sqrt{\frac{x^2-4x+4}{2-x}}\left(x\ne2\right)\)
\(=\sqrt{\frac{\left(2-x\right)^2}{2-x}}\)
\(=\sqrt{2-x}\)
Vì \(x^2-4x+4=\left(x-2\right)^2>0\left(\forall x\right)\) nên để căn thức có nghĩa thì
\(\Rightarrow2-x>0\Rightarrow x< 2\)
Ta có:
\(P=\sqrt{\frac{x^2-4x+4}{2-x}}=\sqrt{\frac{\left(2-x\right)^2}{2-x}}=\sqrt{2-x}\)
Vậy \(P=\sqrt{2-x}\)