Số giao điểm của parabol y= 2x^2 +3x-1 với đường thẳng y=x-2 là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT hoành độ giao điểm: \(-2x^2+x-2=-1\Leftrightarrow2x^2-x+1=0\)
\(\Delta=1-8< 0\) nên parabol ko giao với đt \(y=-1\)
- Xét phương trình hoành độ giao điểm : \(x^2=2x+3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2-2x+1-4=\left(x-1\right)^2-2^2=0\)
\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy P giao với đường thẳng tại 2 điểm trong mptđ .
Phương trình hoành độ giao điểm của parabol \(y=x^2\) và đường thẳng y=2x+3 là:
\(x^2=2x+3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: Số giao điểm của parabol \(y=x^2\) và đường thẳng y=2x+3 là 2 giao điểm
Phương trình hoành độ giao điểm (P) và (d):
\(2x^2=-3x+5\Leftrightarrow2x^2+3x-5=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-\dfrac{5}{2}\Rightarrow y=\dfrac{25}{2}\end{matrix}\right.\)
Vậy (d) và (P) cắt nhau tại 2 điểm có tọa độ lần lượt là: \(\left(1;2\right);\left(-\dfrac{5}{2};\dfrac{25}{2}\right)\)
a: Khi m=4 thì (d): y=-x+4
PTHĐGĐ là:
1/2x^2=-x+4
=>x^2=-2x+8
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
Khi x=2 thì y=1/2*2^2=2
Khi x=-4 thì y=1/2(-4)^2=8
PT hoành độ giao điểm:
\(2x^2+3x-1=x-2\\ \Leftrightarrow2x^2+2x+1=0\\ \Delta=4-8< 0\)
Do đó PT vô nghiệm
Vậy parabol không có giao điểm với đt y=x-2