K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

2585

còn cách giải bạn tham khảo câu hỏi tương tự nha bạn

24 tháng 12 2015

\(2A=\left(1+3+3^2+....+3^{n-1}\right)+\left(n-1\right)=B+\left(n-1\right)\)

\(3B=\left(3+3^2+3^3....+3^n\right)\)

\(2B=3^n-1\)

\(A=\frac{3^n-1}{4}+\frac{\left(n-1\right)}{2}\)

5 tháng 7 2016

\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)

\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{1.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)

\(=\frac{3}{5}+\frac{-1}{7}\)

\(=\frac{21}{35}-\frac{5}{35}\)

\(=\frac{16}{35}\)

5 tháng 7 2016

\(A=\frac{3.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)

\(A=\frac{3}{5}+\frac{1}{7}=\frac{21}{35}+\frac{5}{35}=\frac{26}{35}\)

22 tháng 4 2019

1/

a, 24 - {12 -[(-10)-(-2)]}

=24-{12-(-8)}

=24-20

=4

22 tháng 4 2019

b,\(\frac{2}{3}\)+\(\frac{1}{3}\).(\(\frac{-2}{3}\)+\(\frac{5}{6}\)):\(\frac{2}{3}\)

=\(\frac{2}{3}\)+\(\frac{1}{3}\).(\(\frac{-4}{6}\)+\(\frac{5}{6}\)):\(\frac{2}{3}\)

=\(\frac{2}{3}\)+\(\frac{1}{3}\).\(\frac{1}{6}\).\(\frac{3}{2}\)

=\(\frac{2}{3}\)+\(\frac{1}{18}\).\(\frac{3}{2}\)

=\(\frac{2}{3}\)+\(\frac{1}{6}\).\(\frac{1}{2}\)

=\(\frac{2}{3}\)+\(\frac{1}{12}\)

=\(\frac{8}{12}\)+\(\frac{1}{12}\)

=\(\frac{9}{12}\)=\(\frac{3}{4}\)

17 tháng 2 2020

1/ Ta có :\(-43.92-46.27+46.41\)

            \(=\left(-86\right).46-46.27+46.41\) 

            \(=46.\left(-86-27+41\right)\)

            \(=46.\left(-72\right)\) 

            \(=-3312\)

5 tháng 7 2019

A=\(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)

\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)

\(=\frac{3}{5}+\frac{1}{-7}=\frac{3}{5}-\frac{1}{7}\)

\(=\frac{21}{35}-\frac{5}{35}=\frac{16}{35}\)

9 tháng 8 2017

a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)

\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)

b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0

9 tháng 8 2017

a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)

\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)

\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)

\(=\frac{2}{3}+\frac{1}{11}\)

\(=\frac{25}{33}\)

b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)

Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.