K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

Đặt ẩn rồi xét sự biến thiên thôi

\(\cos x=t;t\in\left[-1;1\right]\)

\(\Rightarrow y=t^2+t-1\)

\(f\left(-1\right)=\left(-1\right)^2-1-1=-1\)

\(f\left(1\right)=1+1-1=1\)

\(f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-\frac{1}{2}-1=-\frac{5}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}y_{max}=f\left(1\right)=1\\y_{min}=f\left(-\frac{1}{2}\right)=-\frac{5}{4}\end{matrix}\right.\)

Tự xét dấu bằng nhó

16 tháng 3 2018

Chọn A

18 tháng 7 2021

\(y=sin^3x+2sin^2x+sinx-2\)

đặt \(t=sinx\) với \(t\in\left[-1;1\right]\)

 pt \(\Leftrightarrow\)\(y=t^3+2t^2+t-2\)

\(y'=3t^2+4t+1\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{1}{3}\end{matrix}\right.\)

x-1             -1/3                                                     1
y' 0       -        0                      +
y-2     -       -58/27               +                                2

 

vậy GTLN của y = 2 với t=1 \(\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

GTNN của y=-58/27  với \(t=-\dfrac{1}{3}\Leftrightarrow sinx=-\dfrac{1}{3}\Leftrightarrow x=sin^{-1}\left(-\dfrac{1}{3}\right)\)

 

NV
8 tháng 7 2021

\(y=\left|2sin^2x-sinx-1\right|-2sinx\)

Đặt \(sinx=t\in\left[-1;1\right]\)

\(\Rightarrow y=f\left(t\right)=\left|2t^2-t-1\right|-2t\)

BBT cho \(f\left(t\right)\) trên \(\left[-1;1\right]\):

undefined

Từ BBT ta thấy \(y_{max}=4\) khi \(sinx=-1\)\(y_{min}=-2\) khi \(sinx=1\)

21 tháng 8 2021

Đặt \(sinx=t\left(t\in\left[-1;1\right]\right)\)

\(y=\left|sinx+cos2x\right|=\left|2sin^2x-sinx-1\right|\)

\(\Leftrightarrow y=\left|f\left(t\right)\right|=\left|2t^2-t-1\right|\)

\(f\left(-1\right)=2\Rightarrow y=2\)

\(f\left(1\right)=0\Rightarrow y=0\)

\(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\Rightarrow y=\dfrac{9}{8}\)

\(\Rightarrow y_{min}=0;y_{max}=2\)

 

 

NV
8 tháng 7 2021

Đặt \(sinx+cosx=t\Rightarrow-\sqrt{2}\le t\le\sqrt{2}\)

\(t^2=sin^2x+cos^2x+2sinx.cosx=1+2sinx.cosx\Rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)

\(\Rightarrow y=t+\dfrac{t^2-1}{2}=\dfrac{1}{2}t^2+t-\dfrac{1}{2}\)

Xét hàm \(f\left(t\right)=\dfrac{1}{2}t^2+t-\dfrac{1}{2}\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)

\(-\dfrac{b}{2a}=-1\) 

\(f\left(-\sqrt{2}\right)=\dfrac{1-2\sqrt{2}}{2}\) ; \(f\left(-1\right)=-1\) ; \(f\left(\sqrt{2}\right)=\dfrac{1+2\sqrt{2}}{2}\)

\(\Rightarrow y_{min}=-1\) khi \(t=-1\) ; \(y_{max}=\dfrac{1+2\sqrt{2}}{2}\) khi \(t=\sqrt{2}\)

8 tháng 7 2021

Đặt \(t=sinx+cosx;t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(\Rightarrow\dfrac{t^2-1}{2}=sinx.cosx\)

\(y=t+\dfrac{t^2-1}{2}=\dfrac{t^2}{2}+t-\dfrac{1}{2}\)

Vẽ BBT của \(f\left(t\right)=\dfrac{t^2}{2}+t-\dfrac{1}{2};t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(\Rightarrow\)\(f\left(t\right)_{min}=-1\Leftrightarrow t=-1\Rightarrow sinx+cosx=-1\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{1}{\sqrt{2}}\)....

\(f\left(t\right)_{max}=\dfrac{1+2\sqrt{2}}{2}\)\(\Leftrightarrow t=\sqrt{2}\Rightarrow sinx+cosx=\sqrt{2}\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=1\)....

18 tháng 10 2018

14 tháng 8 2018

21 tháng 9 2017

Đáp án C

TXĐ:

- Khi đó:

4 tháng 6 2019

25 tháng 2 2017

Chọn B