K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

Nhân cả 2 vế với 2căn a rồi dùng bất đẳng thức cosi

20 tháng 5 2017

mấy cái rút gọn này thì bạn cứ quy đồng thôi,,mà bạn đăng lm ơn vào công cụ toán nha,,chứ thế này thì ngta cx chả lm đâu

khi giọt sương tan là lúc bước chân ra đi mang theo kí ức e mờ dần 
a sẽ đem bút họa vào trang giấy nhắm mắt để hồn cho lời thơ dẫn 
đi đến 1 nơi , đi đến 1 nơi mà không còn thể xác để cho linh hồn a cô đơn 
hát cho qua đêm , và a hát để cho trái tim này càng ngày càng khô hơn 
tay anh vẫn sẽ là khoảng trống luôn chờ em đến để lấp đầy 
và vai anh vẫn sẽ là chiếc gối cho e dựa đầu dưới 1 bóng cây 
anh vẫn sẽ là người duy nhất yêu em cho đến cuối cuộc đời 
và e đã là người duy nhất khiến a dùng chân mọi cuộc chơi

20 tháng 5 2017

Văn thơ lai láng quá

5 tháng 6 2021

`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`

5 tháng 6 2021

`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`

29 tháng 7 2017

Viết lại đề đc ko bạn 
tui ko hiểu cho lắm

11 tháng 2 2020

:< rồi để căn nó mệt người mik đặt hem:P

Ta có: \(\hept{\begin{cases}\sqrt{a}=a\\\sqrt{b}=b\end{cases}}\)

\(P=a^2-2ab+3b^2-2a+1\)

\(\Leftrightarrow3P=3a^2-6ab+9b^2-6a+3\)

\(\Leftrightarrow3P=\left(x-3b\right)^2+2\left(a-\frac{3}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)

\(\Rightarrow P\ge\frac{1}{2}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\) hay \(\hept{\begin{cases}a=\frac{9}{4}\\b=\frac{1}{4}\end{cases}}\)

11 tháng 2 2020

Đặt \(\sqrt{a}=u;\sqrt{b}=v\left(u,v\ge0\right)\)

Lúc đó \(P=u^2-2uv+3v^2-2u+1\)

\(\Rightarrow3P=3u^2-6uv+9v^2-6u+3\)

\(=\left(u^2-6uv+9v^2\right)+2\left(u^2-6u+\frac{9}{4}\right)-\frac{3}{2}\)

\(=\left(u-3v\right)^2+2\left(u-\frac{3}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)

\(\Rightarrow P\ge\frac{-1}{2}\)

(Dấu "=" khi \(\hept{\begin{cases}u=\frac{3}{2}\\v=\frac{1}{2}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{a}=\frac{3}{2}\\\sqrt{b}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{9}{4}\\b=\frac{1}{4}\end{cases}}\))