Tìm GTLN GTNN của hàm số
y=Sinx-2Cosx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tính chẵn lẻ:
a) TXĐ: D = R \ {π/2 + kπ| k nguyên}
Với mọi x thuộc D ta có (-x) thuộc D và
\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)
Vậy hàm đã cho là hàm lẻ
b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)
Với mọi x thuộc D ta có (-x) thuộc D và
\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)
Vậy hàm đã cho là hàm lẻ
Tìm GTLN, GTNN:
TXĐ: D = R
a) Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)
Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)
\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)
Vậy \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)
\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
b) Với mọi x thuộc D ta có:
\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)
\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)
Vậy\(Min_{f\left(x\right)}=5\) khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)
\(Max_{f\left(x\right)}=\sqrt{5}+4\) khi \(\cos x=1\Leftrightarrow x=k2\pi\)
c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)
Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)
Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p
\(y=\sqrt{3}cosx-sinx=2\left(\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\right)=2cos\left(x+\dfrac{\pi}{6}\right)\)
Vì \(cos\left(x+\dfrac{\pi}{6}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{3}cosx-sinx\in\left[-2;2\right]\)
\(\Rightarrow y_{min}=-2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=\pi+k2\pi\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)
\(y_{max}=2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+k2\pi\)
\(y=\left|2sin^2x-sinx-1\right|-2sinx\)
Đặt \(sinx=t\in\left[-1;1\right]\)
\(\Rightarrow y=f\left(t\right)=\left|2t^2-t-1\right|-2t\)
BBT cho \(f\left(t\right)\) trên \(\left[-1;1\right]\):
Từ BBT ta thấy \(y_{max}=4\) khi \(sinx=-1\); \(y_{min}=-2\) khi \(sinx=1\)
Đặt \(sinx+cosx=t\Rightarrow-\sqrt{2}\le t\le\sqrt{2}\)
\(t^2=sin^2x+cos^2x+2sinx.cosx=1+2sinx.cosx\Rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)
\(\Rightarrow y=t+\dfrac{t^2-1}{2}=\dfrac{1}{2}t^2+t-\dfrac{1}{2}\)
Xét hàm \(f\left(t\right)=\dfrac{1}{2}t^2+t-\dfrac{1}{2}\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)
\(-\dfrac{b}{2a}=-1\)
\(f\left(-\sqrt{2}\right)=\dfrac{1-2\sqrt{2}}{2}\) ; \(f\left(-1\right)=-1\) ; \(f\left(\sqrt{2}\right)=\dfrac{1+2\sqrt{2}}{2}\)
\(\Rightarrow y_{min}=-1\) khi \(t=-1\) ; \(y_{max}=\dfrac{1+2\sqrt{2}}{2}\) khi \(t=\sqrt{2}\)
Đặt \(t=sinx+cosx;t\in\left[-\sqrt{2};\sqrt{2}\right]\)
\(\Rightarrow\dfrac{t^2-1}{2}=sinx.cosx\)
\(y=t+\dfrac{t^2-1}{2}=\dfrac{t^2}{2}+t-\dfrac{1}{2}\)
Vẽ BBT của \(f\left(t\right)=\dfrac{t^2}{2}+t-\dfrac{1}{2};t\in\left[-\sqrt{2};\sqrt{2}\right]\)
\(\Rightarrow\)\(f\left(t\right)_{min}=-1\Leftrightarrow t=-1\Rightarrow sinx+cosx=-1\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{1}{\sqrt{2}}\)....
\(f\left(t\right)_{max}=\dfrac{1+2\sqrt{2}}{2}\)\(\Leftrightarrow t=\sqrt{2}\Rightarrow sinx+cosx=\sqrt{2}\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=1\)....
\(y=\sqrt{5}\left(\frac{1}{\sqrt{5}}sinx-\frac{2}{\sqrt{5}}cosx\right)=\sqrt{5}sin\left(x-a\right)\) với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{1}{\sqrt{5}}\)
Do \(-1\le sin\left(x-a\right)\le1\Rightarrow-\sqrt{5}\le a\le\sqrt{5}\)
\(y_{max}=\sqrt{5}\) ; \(y_{min}=-\sqrt{5}\)
Tại sao lại đặt căn 5 ra vậy ạ