K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

584 x 2 + 236 x 3 + 324 x 4

= 1168 + 708 + 1296

= 3172

29 tháng 10 2021

  584 x 2 + 236 x 3 + 324 x 4

= 1168 + 708 + 1296

= 1876 + 1296

= 3172

9 tháng 8 2016

a, GTNN của a là 2,5                                                                                                                                                                          b, GTNN của B là 2

26 tháng 9 2019

T chịu

20 tháng 1 2022

492;1379;1888;2322

20 tháng 1 2022

123x4=492

197x7=1379

236x8=1888

387x6=2382

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

14 tháng 8 2019

a) \(\frac{2x-3}{4-x}=\frac{4-x}{2x-3}\)

\(\left(2x-3\right)\left(2x-3\right)=\left(4-x\right)\left(4-x\right)\)

\(\left(2x-3\right)^2=\left(4-x\right)^2\)

\(4x^2-12x+9=16-8x+x^2\)

\(4x^2-12x+9-16+8x-x^2=0\)

\(3x^2-4x-7=0\)

\(3x^2+3x-7x-7=0\)

\(3x\left(x+1\right)-7\left(x+1\right)=0\)

\(\left(x+1\right)\left(3x-7\right)=0\)

\(\hept{\begin{cases}x+1=0\\3x-7=0\end{cases}}\)

\(\hept{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)

26 tháng 12 2018

\(2\left|x-1\right|+3\left(x+2\right)=3^2\)

\(2\left|x-1\right|+3x+6=9\)

\(2\left|x-1\right|=9-3x-6\)

\(2\left|x-1\right|=3-3x\)

\(\left|x-1\right|=\frac{3-3x}{2}\)

\(\Rightarrow\orbr{\begin{cases}x-1=\frac{3-3x}{2}\\x-1=-\frac{3-3x}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3-3x}{2}+\frac{2}{2}\\x=\frac{-3+3x}{2}+\frac{2}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3-3x+2}{2}\\x=\frac{-3+3x+2}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{5-3x}{2}\\x=\frac{-1+3x}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=5-3x\\2x=-1+3x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}5x=5\\x=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

23 tháng 11 2018

a, 47,5 x 0,5 x 4 

= 47,5 x 2 

= 95

b, 4 x 6,58 x 2,25

= 4 x 2,25 x 6,58

= 9 x 6,58

= 59,22

c, 1,25 x 2 x 13,8 x 4

= 1,25 x 2 x 4 x 13,8

= 1,25 x 8 x 13,8

= 10 x 13,8

= 138

23 tháng 11 2018

a,47,5x0.5x4

=47,5 x 2

=95

b,4x6,58x2,25

=4x 2,25x6,58

=9x6,58

=59,22

c,1,25x2x13,8x4

=1,25x4x2x13,8

=5x2x13,8

=10x13,8

=138

11 tháng 9 2018

\(4x+3.\left(1-x\right)=2.\left(x-2\right)\)

\(4x+3-3x=2x-4\)

\(\left(4x-3x\right)+3=2x-4\)

\(x+3=2x-4\)

\(x-2x=-4-3\)

\(-x=-7\)

\(x=7\)

câu e), c) mik ko biết

câu b) dấu = nằm chỗ nào vậy b

a)

\(x\)x ( 25 - 1 ) = 2760

\(x\)x 24 = 2760

x = 2760 : 24

x = 115

d)

x = 214 + 214

x = 428