K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2020

a) \(13-3\left|x+5\right|=4\)

\(\Leftrightarrow3\left|x+5\right|=9\)

\(\Leftrightarrow\left|x+5\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=3\\x+5=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)

b) \(x-\frac{3}{4}=2x+\frac{1}{2}\)

\(\Leftrightarrow x-2x=\frac{1}{2}+\frac{3}{4}\)

\(\Leftrightarrow-x=\frac{5}{4}\)

\(\Leftrightarrow x=\frac{-5}{4}\)

c) ĐKXĐ : x khác -3

\(\frac{x+1}{x+3}=\frac{1}{5}\)

\(\Leftrightarrow5\left(x+1\right)=x+3\)

\(\Leftrightarrow5x+5=x+3\)

\(\Leftrightarrow5x-x=-5+3\)

\(\Leftrightarrow4x=-2\Leftrightarrow x=\frac{-1}{2}\)

18 tháng 10 2020

a) 13 - 3|x + 5| = 4

=> 3|x + 5| = 9

=> |x + 5| = 3

=> x + 5 = 3 hoặc x + 5 = -3

=> x = -2 hoặc x = -8

b) \(\frac{x-3}{4}=\frac{2x+1}{2}\)

=> 2(x - 3) = 4(2x + 1)

=> 2x - 6 = 8x + 4

=> 2x - 6 - 8x - 4 = 0

=> -6x - 10 = 0

=> -6x = 10

=> x = 10/-6 = -10/6 = -5/3

c) \(\frac{x+1}{x+3}=\frac{1}{5}\)

=> 5(x + 1) = x + 3

=> 5x + 5 - x - 3  = 0

=> 4x + 2 = 0

=> 4x= -2 => x = -1/2

1 tháng 10 2021

\(a,\Leftrightarrow\left|x+\dfrac{2}{5}\right|=\dfrac{7}{4}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{5}=\dfrac{7}{4}\left(x\ge-\dfrac{2}{5}\right)\\x+\dfrac{2}{5}=-\dfrac{7}{4}\left(x< -\dfrac{2}{5}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{27}{20}\left(tm\right)\\x=-\dfrac{43}{20}\left(tm\right)\end{matrix}\right.\)

\(b,\Leftrightarrow\left|x-\dfrac{13}{10}\right|=\dfrac{13}{10}\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{13}{10}=\dfrac{13}{10}\left(x\ge\dfrac{13}{10}\right)\\x-\dfrac{13}{10}=-\dfrac{13}{10}\left(x< \dfrac{13}{10}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

\(c,\Leftrightarrow\left|\dfrac{3}{4}-\dfrac{1}{2}x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}-\dfrac{1}{2}x=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\\\dfrac{1}{2}x-\dfrac{3}{4}=\dfrac{1}{2}\left(x>\dfrac{3}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{5}{2}\left(tm\right)\end{matrix}\right.\)

\(d,\Leftrightarrow\left|5-2x\right|=4\Leftrightarrow\left[{}\begin{matrix}5-2x=4\left(x\le\dfrac{5}{2}\right)\\2x-5=4\left(x>\dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)

\(đ,\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\\x-1,3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\x=1,3\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(e,\Leftrightarrow\left\{{}\begin{matrix}x-2021=0\\x-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\x=2022\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(f,\Leftrightarrow\left|x\right|=\dfrac{1}{3}-x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}-x\left(x\ge0\right)\\x=x-\dfrac{1}{3}\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\left(tm\right)\\0x=-\dfrac{1}{3}\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)

\(g,\Leftrightarrow\left[{}\begin{matrix}x-2=x\left(x\ge2\right)\\2-x=x\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=2\left(vô.lí\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\)

a: =>5x>1

=>x>1/5

b: =>3x-3<2

=>3x<5

=>x<5/3

c: =>2x-3x^2-x<15-3x^2-6x

=>x<15-6x

=>7x<15

=>x<15/7

17 tháng 8 2021

a)\(\left|\dfrac{x-1}{3}\right|=\dfrac{11}{5}\Rightarrow\dfrac{x-1}{3}=\pm\dfrac{11}{5}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{x-1}{3}=\dfrac{11}{5}\\\dfrac{x-1}{3}=-\dfrac{11}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{33}{5}\\x-1=\dfrac{-33}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{38}{5}\\x=\dfrac{-28}{5}\end{matrix}\right.\)

 

14 tháng 7 2018

2.a) \(8x^2-4x=0\Rightarrow4x\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

b) \(5x\left(x-3\right)+7\left(x-3\right)=0\Rightarrow\left(x-3\right)\left(5x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\5x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1.4\end{matrix}\right.\)

c) \(2x^2=x\Rightarrow2x^2-x=0\Rightarrow x\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0.5\end{matrix}\right.\)

d) \(x^3=x^5\Rightarrow x^3-x^5=0\Rightarrow x^3\left(1-x^2\right)=0\\ \Rightarrow x^3\left(1-x\right)\left(1+x\right)=0\Rightarrow\left[{}\begin{matrix}x^3=0\\1-x=0\\1+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^2+2x\right)=0\Rightarrow\left(x+1\right)x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

g. \(x\left(2x-3\right)-2\left(3-2x\right)=0\)

\(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1.5\\x=-2\end{matrix}\right.\)

21 tháng 3 2016

het thoirui pan oi

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

a) ĐKXĐ: x≠-5

Ta có: \(\dfrac{2x-5}{x+5}=4\)

\(\Leftrightarrow2x-5=4\left(x+5\right)\)

\(\Leftrightarrow2x-5=4x+20\)

\(\Leftrightarrow2x-5-4x-20=0\)

\(\Leftrightarrow-2x-25=0\)

\(\Leftrightarrow-2x=25\)

hay \(x=\dfrac{-25}{2}\)(nhận)

Vậy: \(S=\left\{-\dfrac{25}{2}\right\}\)

b) ĐKXĐ: x≠0

Ta có: \(\dfrac{x^2-4}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2\left(x^2-4\right)=x\left(2x+3\right)\)

\(\Leftrightarrow2x^2-8=2x^2+3x\)

\(\Leftrightarrow2x^2-8-2x^2-3x=0\)

\(\Leftrightarrow-3x-8=0\)

\(\Leftrightarrow-3x=8\)

hay \(x=\dfrac{-8}{3}\)(nhận)

Vậy: \(S=\left\{-\dfrac{8}{3}\right\}\)

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-5\right\}\)

Ta có: \(\dfrac{2x+3}{2x-1}=\dfrac{x-3}{x+5}\)

\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\)

\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)

\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)

\(\Leftrightarrow2x^2+13x+15-2x^2+7x-3=0\)

\(\Leftrightarrow20x+12=0\)

\(\Leftrightarrow20x=-12\)

hay \(x=-\dfrac{3}{5}\)(nhận)

Vậy: \(S=\left\{-\dfrac{3}{5}\right\}\)

d) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+x+42x+7\)

\(\Leftrightarrow6x^2-13x+6=6x^2+43x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

a) \(\left(2x+5\right)^2\)\(-\left(x-9\right)^2\)

=\(\left(2x+5+x-9\right).\left(2x+5-x+9\right)\)

=\(\left(3x-4\right).\left(x+14\right)\)