\(C=\frac{1}{2\sqrt{x}-2}\)\(-\frac{1}{2\sqrt{x}+2}\)\(-\frac{\sqrt{x}}{x-1}\); \(x\ge0;x\ne1\)
a) rút gọn C
b) thay x = \(\frac{4}{9}\); tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, dk \(x\ge0.x\ne1\)
\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)
=\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)
phan b,c ban tu lam not nhe dai lam mk ko lam dau mk co vc ban rui
A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)
Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)
C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)
Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0
a) C=\(\frac{1}{2\left(\sqrt{x}-1\right)}\)_\(\frac{1}{2\left(\sqrt{x}+1\right)}\)_\(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(x\ge0;x\ne1\)
C=\(\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+x\right)}\)
C=\(\frac{-2\sqrt{x}+2}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
C=\(\frac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
C=\(\frac{-1}{\sqrt{x}+1}\)
vậy với \(x\ge0;x\ne1\)thì C=\(\frac{-1}{\sqrt{x}+1}\)
b) thay x=\(\frac{4}{9}\)vào bt ta có :
C=\(\frac{-1}{\sqrt{\frac{4}{9}}+1}\)
C=\(\frac{-1}{\frac{2}{3}+1}=\frac{-1}{\frac{5}{3}}\)
C=\(\frac{-5}{3}\)
vậy với x=\(\frac{4}{9}\)thì C=\(\frac{-5}{3}\)