K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

Vì a không chia hết cho 3

=> \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}}\left(k\inℕ\right)\)

Khi a = 3k + 1

=> a2 - 1 = (3k + 1)2 - 1 = (3k + 1)(3k + 1) - 1 = 9k2 + 3k + 3k + 1 - 1 = 9k2 + 6k = 3k(3k + 2) \(⋮\)3 (1)

Khi a = 3k + 2

=> a2 - 1 = (3k + 2)2 - 1 = (3k + 2)(3k + 2) - 1 = 9k2 + 6k + 6k + 4 - 1 = 9k2 + 12k + 3 = 3(3k2 + 4k + 1) \(⋮\)3 (2)

Từ (1)(2) => a2 - 1 \(⋮\)3 với mọi a không chia hết cho 3 (đpcm)

23 tháng 7 2019

#)Giải :

Đặt \(K=1+a+a^2+...+a^n\Rightarrow aK=1.a+a.a+a^2.a+...+a^n.a\)

\(=a+a^2+a^3+...+a^{n+1}\)

\(\Rightarrow aK-K=\left(a+a^2+a^3+...+a^{n+1}\right)-\left(1+a+a^2+...+a^n\right)=a^{n+1}-a\)

\(\Rightarrow K=\frac{a^{n+1}-a}{a}\)

3 tháng 10 2021

Giả sử \(\hept{\begin{cases}a⋮p\\b⋮̸p\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮p\\b^2⋮̸p\end{cases}}\)

=> \(\hept{\begin{cases}a^2:p\text{ dư }4k;4k+1;4k+2\\b^2:p\text{ dư }4k;4k+1;4k+2\end{cases}}\)

Chọn ngẫu nhiên các cặp a2 ; b2 bất kì nhận thấy 

 a2 + b2 \(⋮̸\)p (trái với giả thiết) 

=> Điều giả sử là sai => đpcm 

14 tháng 3 2019

a, \(a\in\left\{0,1\right\}\)

b, \(m>n\)

3 tháng 3 2019

À hai câu này liền nhau

Tính giá trị của biểu thức M=\(\left(\frac{a}{b}\right)^{2016}-\left(\frac{c}{a}\right)^{2017}\)

3 tháng 3 2019

a = b =c =1

(^_^)

29 tháng 3 2018

Tổng các số hạng của A là: 17n+(1+1+...+1)=17n+n = 18n=9.(2n) chia hết cho 9

=> A chia hết cho 9

29 tháng 3 2018

A chia hết cho 9

Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.

Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:

  1. Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.

  2. Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.

  3. Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.

  4. Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.

Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.

Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.

Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.

Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b  N, 0 < a < 10), thì tích ab chia hết cho 6.

10 tháng 12 2023

Rảnh à?

 

25 tháng 6 2018

1+2+3+...+n=aaa

n(n+1) :2= a.111

n(n+1):2=a.3.37

n(n+1)=2.3.37.a

n(n+1)=6.37.a

vì n thuộc N*

=>n+1 thuộc N*

=>n(n+1) là hai số tự nhiên liên tiếp

mà 6.37.a với a là chữ số

=>6.a và 37 là 2 số t/n liên tiếp

=>6a =36

=>a=6  

với a=6 thì n=36

vậy a=6 và n=36