K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

Sai đề bạn ơi

25 tháng 12 2020

Ta có: n+3 chia hết cho n-1

mà: n-1 chia hết cho n-1

suy ra:[(n+3)-(n-1)]chia hết cho n-1

              (n+3-n+1)chia hết cho n-1

                        4    chia hết cho n-1

                  suy ra n-1 thuộc Ư(4)

           Ư(4)={1;2;4}

suy ra n-1 thuộc {1;2;4}

Ta có bảng sau:

n-1          1             2           4

n              2             3           5

    Vậy n=2 hoặc n=3 hoặc n=5 

 

25 tháng 12 2020

cảm ơn bạn nhaok

20 tháng 12 2020

a/

\(n+3⋮n-1\)

\(\Leftrightarrow4⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(4\right)=\left\{1;-1;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;2;-3;5\right\}\)

Mà n là stn

\(\Leftrightarrow n\in\left\{0;2;5\right\}\)

b/ \(4n+3⋮2n+1\)

\(\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\)

\(\Leftrightarrow1⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

Mà n là số tự nhiên

=> 2n + 1 là số tự nhiên

=> 2n + 1 = 1

=> 2n = 0

=> n = 0

26 tháng 9 2018

Nhận thấy A = 3n + 4n +1 chia hết cho 2 với mọi n tự nhiên, để A chia hết cho 10 ta cần A chia hết cho 5 là đủ.

Nhận xét: 34 \(\equiv\)1 (mod 5), ta sẽ xét các trường hợp: n = 4k, n = 4k+1, n = 4k+2, n = 4k+3 với k là số tự nhiên.

TH1: n = 4k.

A = 34k + 4.(4k) + 1 = 81k + 16k +1 \(\equiv\)1 + k + 1 \(\equiv\)2+k (mod 5)

Để A chia hết cho 5 thì k phải có dạng 5h + 3, với h là số tự nhiên. Vậy n = 4.(5h+3) = 20h +12 thì A chia hết cho 10.

Tương tự với các trường hợp sau bạn giải tiếp nhé!

4 tháng 1 2020

iiiiiiiiiiiiiiiiiiiiirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggffffffffffffffffffffff

10 tháng 12 2015

a) n-1+4 chia hết cho n-1\(\Rightarrow\)n-1 thuộc Ư(4)={1;2;4)

n-1=1\(\Rightarrow\)n=2

n-1=2\(\Rightarrow\)n=3

n-1=4\(\Rightarrow\)n=5

Vậy n\(\in\){2;3;5}

b) 4n+3=2(2n-1)+5\(\Rightarrow\)2n-1 \(\in\)Ư(5)={1;5}

2n-1=1\(\Rightarrow\)n=1

2n-1=5\(\Rightarrow\)n=3

Vậy n\(\in\){1;3}