Tìm số tự nhiên n sao cho \(3^n+4n+1⋮10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
![](https://rs.olm.vn/images/avt/0.png?1311)
a/
\(n+3⋮n-1\)
\(\Leftrightarrow4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)=\left\{1;-1;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;2;-3;5\right\}\)
Mà n là stn
\(\Leftrightarrow n\in\left\{0;2;5\right\}\)
b/ \(4n+3⋮2n+1\)
\(\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà n là số tự nhiên
=> 2n + 1 là số tự nhiên
=> 2n + 1 = 1
=> 2n = 0
=> n = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhận thấy A = 3n + 4n +1 chia hết cho 2 với mọi n tự nhiên, để A chia hết cho 10 ta cần A chia hết cho 5 là đủ.
Nhận xét: 34 \(\equiv\)1 (mod 5), ta sẽ xét các trường hợp: n = 4k, n = 4k+1, n = 4k+2, n = 4k+3 với k là số tự nhiên.
TH1: n = 4k.
A = 34k + 4.(4k) + 1 = 81k + 16k +1 \(\equiv\)1 + k + 1 \(\equiv\)2+k (mod 5)
Để A chia hết cho 5 thì k phải có dạng 5h + 3, với h là số tự nhiên. Vậy n = 4.(5h+3) = 20h +12 thì A chia hết cho 10.
Tương tự với các trường hợp sau bạn giải tiếp nhé!
iiiiiiiiiiiiiiiiiiiiirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggffffffffffffffffffffff
![](https://rs.olm.vn/images/avt/0.png?1311)
a) n-1+4 chia hết cho n-1\(\Rightarrow\)n-1 thuộc Ư(4)={1;2;4)
n-1=1\(\Rightarrow\)n=2
n-1=2\(\Rightarrow\)n=3
n-1=4\(\Rightarrow\)n=5
Vậy n\(\in\){2;3;5}
b) 4n+3=2(2n-1)+5\(\Rightarrow\)2n-1 \(\in\)Ư(5)={1;5}
2n-1=1\(\Rightarrow\)n=1
2n-1=5\(\Rightarrow\)n=3
Vậy n\(\in\){1;3}
Sai đề bạn ơi