Chứng minh 4n mũ 2 trừ 1 chia hết cho n trừ 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=a^3+b^3+c^3-a-b-c
=a^3-a+b^3-b+c^3-c
=a(a-1)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)
Vì a;a-1;a+1 là 3 số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
Vì b;b-1;b+1 là 3 số liên tiếp
nên b(b-1)(b+1) chia hết cho 3!=6
Vì c;c-1;c+1 là 3 số liên tiếp
nên c(c-1)(c+1) chia hết cho 3!=6
=>A chia hết cho 6
ta có: \(3000^{2009}-1=\left(3000-1\right).\left(3000^{2008}+3000^{2007}+...+3000+1\right)\)
\(=2009.\left(3000^{2008}+3000^{2007}+...+3000+1\right)⋮2009\)
\(\Rightarrow3000^{2009}-1⋮2009\left(đpcm\right)\)
Chứng minh:1050-1 chia hết cho 3
Ta có:
1050=10.10....10 (có 50 số 10)=1000...000(50 số 0)
1000000....0000 - 1= 9999..99(có 49 số 9)
9999....999 có tổng các chữ số bằng 441 mà 441 chia hết cho 3
Vậy 1050-1 chia hết cho 3
Ta có :1050 = 10000..000 (50 c/s 0 )
Nếu lấy số đó -1 ta sẽ được số :999999999999999999999999 (50 c/s 9)
=> nó chắc chắn chia hết cho 3.