K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

thay cung giao bi nay cho mih

17 tháng 3 2022

có thể vẽ hình ra được không ạ?

NV
21 tháng 12 2022

Gọi O là tâm đường tròn ngoại tiếp tam giác, D là trung điểm BC

\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}\)

Đặt \(T=MB^2+MC^2-2MA^2\)

\(T=\left(\overrightarrow{MO}+\overrightarrow{OB}\right)^2+\left(\overrightarrow{MO}+\overrightarrow{OC}\right)^2-2\left(\overrightarrow{MO}+\overrightarrow{OA}\right)^2\)

\(=OB^2+OC^2-2OA^2+2\overrightarrow{MO}\left(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA}\right)\)

\(=2\overrightarrow{MO}\left(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA}\right)\)

\(=2\overrightarrow{MO}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(=4\overrightarrow{MO}.\overrightarrow{AD}\)

\(=4R.AD.cos\left(\overrightarrow{MO};\overrightarrow{AD}\right)\)

Do R và AD cố định \(\Rightarrow T_{min}\) khi \(cos\left(\overrightarrow{MO};\overrightarrow{AD}\right)\) đạt min

\(\Rightarrow cos\left(\overrightarrow{MO};\overrightarrow{AD}\right)=-1\)

\(\Rightarrow\overrightarrow{MO}\) và \(\overrightarrow{AD}\) là 2 vecto ngược chiều

\(\Rightarrow\) M là giao điểm của đường thẳng d và đường tròn ngoại tiếp tam giác, với d đi qua O và song song AD sao cho A và M nằm về 2 phía so với đường thẳng BC

a: Xét ΔBAM và ΔCAM có

AB=AC

góc BAM=góc CAM

AM chung

=>ΔBAM=ΔCAM

=>MB=MC

b: ΔABC cân tại A có AD là phân giác

nên AD vuông góc BC

Xét ΔBAM có

DA<DM

DA,DM lần lượt là hình chiếu của BA,BM trên AM

=>BA<BM

11 tháng 4 2022
3 tháng 8 2018

Chọn D.

23 tháng 1 2020

cho mihf hỏi tam giác gì nội tiếp đường tròn O vậy

23 tháng 1 2020

mình nghĩ đề cho bổ sung là cho tam giác ABC đều nội tiếp đường tròn ( O ) vì mình đã từng làm rồi

lời giải :

A B C O M D

a) vì MD = MB nên \(\Delta MBD\)cân tại M

\(\widehat{BMD}=\widehat{BCA}=60^o\)( cùng chắn cung AB )

\(\Rightarrow\)\(\Delta MBD\)đều

b) Xét \(\Delta MBC\)và \(\Delta BDA\)có :

MB = BD ; BC = AB ; \(\widehat{MBC}=\widehat{DBA}\)( cùng cộng góc DBC bằng 60 độ )

\(\Rightarrow\Delta MBC=\Delta DBA\left(c.g.c\right)\)suy ra MC = AD

c) Mà MB = MD ( câu a )

nên MC + MB = MD + AD = MA

d) Ta có : MA là dây cung của ( O ; R ) \(\Rightarrow MA\le2R\)

\(\Rightarrow MB+MC+MA=2MA\le4R\)( không đổi )

Dấu " = " xảy ra \(\Leftrightarrow\)MA là đường kính hay M là điểm chính giữa của cung BC