\(x^2+12\sqrt{1-x}=x+36\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
\(x^2+2x+1-\left(x+1\right)+2\sqrt{x+1}.6-36=0\)
\(\left(x+1\right)^2-\left(\sqrt{x+1}-6\right)^2=0\)
\(\left(x-\sqrt{x+1}+7\right)\left(x+\sqrt{x+1}-5\right)=0\)
\(\left[{}\begin{matrix}x-\sqrt{x+1}+7=0\\x+\sqrt{x+1}-5=0\end{matrix}\right.\)
\(a,\) ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)
\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)
__________________________________________________________
\(b,\) với \(x>0\) và \(x\ne1\) . ta có :
\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)
vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)
để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
vậy để \(B=2\) thì \(x=4\)
a)\(x^2+x+12\sqrt{x+1}=36\)
\(pt\Leftrightarrow x^2+x-12+12\sqrt{x+1}-24=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x+1\right)-576}{12\sqrt{x+1}+24}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x-3\right)}{12\sqrt{x+1}+24}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4+\frac{144}{12\sqrt{x+1}+24}\right)=0\)
Dễ thấy: \(x+4+\frac{144}{12\sqrt{x+1}+24}>0\forall x\ge-1\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
b)\(x+\sqrt{x-2}=2\sqrt{x-1}\)
\(pt\Leftrightarrow x-2+\sqrt{x-2}=2\sqrt{x-1}-2\)
\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}=2\left(\sqrt{x-1}-1\right)\)
\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-1-1}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-2}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(1+\frac{1}{\sqrt{x-2}}-\frac{2}{\sqrt{x-1}+1}\right)=0\)
Suy ra x-2=0=>x=2
c)Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:
\(VT=\sqrt{x+3}+\sqrt{1-x}\)
\(\ge\sqrt{x+3+1-x}=\sqrt{4}=2=VP\)
Xảy ra khi \(\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
1) ĐK: \(x\ge-1\)
\(PT\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12.\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
\(\Leftrightarrow x=3\text{ hoặc }\frac{12}{\sqrt{x+1}+2}+x+4=0\) (*)
VT của (*) luôn dương với \(x\ge-1\)
=> x = 3
a.
ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)
\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)
Pt trở thành:
\(729\left(t^4-2t^2+1\right)+8t=36\)
\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)
\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)
b.
ĐKXĐ: ...
\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)
Đặt \(\sqrt{10+4x-x^2}=t\ge0\)
\(\Rightarrow-3t^2-5t+42=0\)
\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{10+4x-x^2}=3\)
\(\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow x=...\)
c: \(\Leftrightarrow\sqrt{4x^2\left(x+2\right)}=3x+1\)
\(\Rightarrow\left\{{}\begin{matrix}4x^2\left(x+2\right)=9x^2+6x+1\\x>=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^3+8x^2-9x^2-6x-1=0\\x>=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x^3-x^2-6x-1=0\\x>=-\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x^3+4x^2-5x^2-5x-x-1=0\\x>=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(4x^2-5x-1\right)=0\\x>=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{5\pm\sqrt{41}}{8}\)
a: \(\Leftrightarrow\sqrt{5+\sqrt{x-1}}=6-x\)
\(\Leftrightarrow5+\sqrt{x-1}=x^2-12x+36\) và x<=6
=>\(\sqrt{x-1}=x^2-12x+31\) và x<=6
=>x-1=(x^2-12x+22+11)^2
=>\(x\in\varnothing\)
Câu b : \(x^2-5x+14=4\sqrt{x+1}\) ( ĐK : \(x\ge-1\) )
\(\Leftrightarrow x^2-5x+14-4\sqrt{x+1}=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left[\left(x+1\right)-4\sqrt{x+1}+4\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
Do : \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(\sqrt{x+1}-2\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(\sqrt{x+1}-2\right)^2=0\end{matrix}\right.\Leftrightarrow x=3\)
Vậy \(x=3\)
a. Ta có : x2 + x = 36 - 12\(\sqrt{x+1}\)
⇌ x2 + 2x + 1 = 36 - 12\(\sqrt{x+1}\) + x + 1
⇌ (x+1)2 = ( \(\sqrt{x+1}\) -6)2
⇌ (x+1)2 - ( \(\sqrt{x+1}\) -6)2 = 0
còn lại tự làm nha
ĐKXĐ: \(x\le1\).
\(PT\Leftrightarrow x^2-2x+1=1-x-12\sqrt{1-x}+36\)
\(\Leftrightarrow\left(x-1\right)^2=\left(\sqrt{1-x}-6\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=\sqrt{1-x}\left(1\right)\\7-x=\sqrt{1-x}\left(2\right)\end{matrix}\right.\).
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\\left(x+5\right)^2=1-x\end{matrix}\right.\Leftrightarrow x=-3\).
\(\left(2\right)\Leftrightarrow\left(7-x\right)^2=1-x\Leftrightarrow x^2-13x+48=0\) (vô nghiệm).
Vậy...