K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

C không có GTLN, vì nếu ta tiến x, y đến vô cực thì C cũng tiến đến vô cực.

+) Tìm GTNN:

\(4C=4x^2+4xy+4y^2-12x-12y=\left(2x+y-3\right)^2+3\left(y-1\right)^2-12\ge-12\)

\(\Rightarrow C\ge-3\)

Dấu "=" xảy ra khi và chỉ khi y = 1; x = 1.

Vậy...

4 tháng 10 2020

Này TRẦN MINH HOÀNG, bn lấy -12 ở đâu ra vậy

6 tháng 5 2016

\(3x^2+3y^2\ge6xy\left(Cauchy\right)\Rightarrow3x^2+3y^2+\frac{6}{xy}\ge6xy+\frac{6}{xy}\ge6.2=12\)

NV
4 tháng 10 2020

\(C=\left(x^2+\frac{y^2}{4}+\frac{9}{4}+xy-3x-\frac{3y}{2}\right)+\frac{3}{4}\left(y^2-2y+1\right)-3\)

\(C=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge-3\)

\(C_{min}=-3\) khi \(x=y=1\)

5 tháng 5 2020

\(2B=2x^2+2y^2-2xy-6x-6y+4058\)

\(2B=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+4040\ge4040\)

\(\Rightarrow B\ge2020\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\x-3=0\\y-3=0\end{cases}\Leftrightarrow x=y=3}\)

Vậy ....

AH
Akai Haruma
Giáo viên
21 tháng 8 2024

Lời giải:

Ta có:

$A=x^2+xy+y^2-3x-3y+2008$
$2A=2x^2+2xy+2y^2-6x-6y+4016$

$=(x^2+2xy+y^2)-4(x+y)+4+ (x^2-2x+1)+(y^2-2y+1)+ 4010$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+4010$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+4010\geq 4010$

$\Rightarrow A\geq 2005$

Vậy $A_{\min}=2005$

Giá trị này đạt tại $x+y-2=x-1=y-1=0$

$\Leftrightarrow x=y=1$

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs