tìm số nguyên dương x,y sao cho :\(x^3+y^3+4\left(x^2+y^2\right)+4\left(x+y\right)=16xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
Và \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a+b\right)^2\ge4ab\)
( dấu '=' xảy ra khi a=b)
Áp dụng các bđt trên ta có
\(x^3+y^3+4\left(x^2+y^2\right)+4\left(x+y\right)=x^3+y^3+4x^2+4y^2+4x+4y=x^3+4x^2+4x+y^3+4y^2+4y=x\left(x^2+4x+4\right)+y\left(y^2+4y+4\right)=x\left(x+2\right)^2+y\left(y+2\right)^2\ge x.8x+y.8y=8\left(x^2+y^2\right)\ge8.2xy=16xy\Leftrightarrow x^3+y^3+4\left(x^2+y^2\right)+4\left(x+y\right)\ge16\)
Dấu '=' xảy ra khi x=y=2
Vậy (x;y)=(2;2)

a: \(4x^3-36x\)
\(=4x\cdot x^2-4x\cdot9\)
\(=4x\left(x^2-9\right)=4x\left(x-3\right)\left(x+3\right)\)
b:Sửa đề: \(4x^3-y^3+4x^2y-xy^2\)
\(=4x^2\left(x+y\right)-y^2\left(x+y\right)\)
\(=\left(x+y\right)\left(4x^2-y^2\right)=\left(x+y\right)\left(2x-y\right)\left(2x+y\right)\)
c: \(a^2+2ab-5a-10b\)
=a(a+2b)-5(a+2b)
=(a+2b)(a-5)
d: \(\left(x+1\right)^3-27\)
\(=\left(x+1\right)^3-3^3\)
\(=\left(x+1-3\right)\left\lbrack\left(x+1\right)^2+3\left(x+1\right)+3^2\right\rbrack\)
\(=\left(x-2\right)\left(x^2+2x+1+3x+3+9\right)\)
\(=\left(x-2\right)\left(x^2-5x+13\right)\)
e: \(4xy^2-4x^2y-y^3\)
\(=y\cdot4xy-y\cdot4x^2-y\cdot y^2\)
\(=-y\left(4x^2-4xy+y^2\right)=-y\left(2x-y\right)^2\)
f: \(\left(5x-y\right)^2-\left(x-2y\right)^2\)
=(5x-y-x+2y)(5x-y+x-2y)
=(4x+y)(6x-3y)
=3(2x-y)(4x+y)
g: \(x^3+2x^2+x-16xy^2\)
\(=x\left(x^2+2x+1-16y^2\right)\)
\(=x\left\lbrack\left(x+1\right)^2-\left(4y\right)^2\right\rbrack\)
=x(x+1-4y)(x+1+4y)

Lời giải:
Ta có:
$x+y=0-4=-4$
$x^2+y^2=(x+y)^2-2xy=(-4)^2-2xy=16-2xy$
$x^3+y^3=(x+y)^3-3xy(x+y)=(-4)^3-3xy(-4)=12xy-64$
Do đó:
$P=2(12xy-64)+3(16-2xy)+16xy=34xy-80=34x(-4-x)-80$
$=-34x^2-136x-80$
Nếu không có thêm điều kiện gì thì biểu thức $P$ không có GTNN bạn nhé.
\(pt=\left(x^3-4x^2+4x\right)+\left(y^3-4y^2+4y\right)+\left(8x^2+8y^2-16xy\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2+y\left(y-2\right)^2+8\left(x-y\right)^2=0\left(1\right)\)
Do \(x\left(x-2\right)^2\ge0,y\left(y-2\right)^2\ge0,8\left(x-y\right)^2\ge0\left(2\right)\)
Từ (1) và (2) =>x=y=2