Tìm m để hàm số :
y= ( 4 - \(\sqrt{m-1}\)) .x + m -2 nghịch biến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(y=\left(m+2\sqrt{m}+1\right)x-10\) là hàm số đồng biến khi: \(\left(m\ge0\right)\)
\(m+2\sqrt{m}+1>0\)
\(\Leftrightarrow\left(\sqrt{m}+1\right)^2>0\) (luôn đúng)
Nên hàm số này luôn là hàm số đồng biến với \(m\ge3\)
b) \(y=\left(\sqrt{m}-3\right)x+2\) là hàm số nghịch biến khi: \(\left(m\ge0\right)\)
\(\sqrt{m}-3< 0\)
\(\Leftrightarrow\sqrt{m}< 3\)
\(\Leftrightarrow m< 9\)
\(\Leftrightarrow0\le m< 9\)
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
\(y'=-x^2+2\left(m-3\right)x+m+4\)
a.
Hàm nghịch biến trên khoảng đã cho khi và chỉ khi: với mọi \(x\in\left(-1;3\right)\) ta có:
\(f\left(x\right)=-x^2+2\left(m-3\right)x+m+4\le0\)
\(\Delta'=\left(m-3\right)^2+m+4=m^2-5m+13>0\) ; \(\forall m\)
Bài toán thỏa mãn khi:
\(\left[{}\begin{matrix}3\le x_1< x_2\\x_1< x_2\le-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}f\left(3\right)\le0\\\dfrac{x_1+x_2}{2}>3\end{matrix}\right.\\\left\{{}\begin{matrix}f\left(-1\right)\le0\\\dfrac{x_1+x_2}{2}< -1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}7m-23\le0\\m-3>3\end{matrix}\right.\\\left\{{}\begin{matrix}-m+9\le0\\m-3< -1\end{matrix}\right.\end{matrix}\right.\)
Không tồn tại m thỏa mãn
b.
Hàm nghịch biến trên khoảng đã cho khi và chỉ khi:
\(\forall x\in\left(2;4\right)\) ta có:
\(-x^2+2\left(m-3\right)x+m+4\le0\)
\(\Leftrightarrow x^2+6x-4\ge m\left(2x+1\right)\)
\(\Leftrightarrow m\le\dfrac{x^2+6x-4}{2x+1}\)
\(\Leftrightarrow m\le\min\limits_{\left[2;4\right]}\dfrac{x^2+6x-4}{2x+1}\)
Xét hàm \(f\left(x\right)=\dfrac{x^2+6x-4}{2x+1}\) trên \(\left[2;4\right]\)
\(f'\left(x\right)=\dfrac{x^2+x+7}{2\left(2x+1\right)^2}>0\) ; \(\forall x\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow m\le f\left(2\right)=\dfrac{12}{5}\)
a: Để hàm số đồng biến trên R thì \(m^2-4>0\)
=>\(m^2>4\)
=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
b: Để hàm số nghịch biến trên R thì \(m^2-4< 0\)
=>\(m^2< 4\)
=>-2<m<2
a) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đồng biến
⇔ 3m - 1 > 0
⇔ 3m > 1
⇔ m > 1313
Vậy m > 1313 thì hàm số y = (3m - 1)x + 2 đồng biến
b) Hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 nghịch biến
⇔ 3m - 1 < 0
⇔ 3m < 1
⇔ m < 1313
Vậy m < 1313 thì hàm số y = (3m - 1)x + 2 nghịch biến
c) Đồ thị hàm số y = (3m - 1)x + 2 với m ≠≠ 1313 đi qua điểm A(2; 3) nên thay x = 2; y = 3 vào hàm số y = (3m - 1)x + 2 ta được:
3 = (3m - 1).2 + 2 (m ≠≠ 1313)
⇔ 3 = 6m - 2 + 2
⇔ 3 = 6m
⇔ m = 1212 (t/m)
Vậy m = 1212 thì đồ thị hàm số y = (3m - 1)x + 2 đi qua điểm A(2; 3)
a.
Hàm số đồng biến trên R khi và chỉ khi:
\(\left\{{}\begin{matrix}7-m\ge0\\\sqrt{7-m}-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le7\\m< 6\end{matrix}\right.\) \(\Leftrightarrow m< 6\)
b. Để hàm nghịch biến trên R
\(\Leftrightarrow m^2+m+1< 0\)
\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\) (vô lý)
Vậy ko tồn tại m thỏa mãn yêu cầu
\(y=\left(m+4\right)x+m-1\left(1\right)\)
a) Hàm số (1) đồng biến
\(\Leftrightarrow m+4\) lớn hơn \(0\)
\(\Leftrightarrow m\) lớn hơn \(-4\)
b) Hàm số (1) nghịch biến
\(\Leftrightarrow m+4\) nhỏ hơn \(0\)
\(\Leftrightarrow m\) nhỏ hơn \(-4\)
(Điện thoại tôi không đánh dấu nhỏ lớn được)
Hàm số trên nghịch biến
\(\Leftrightarrow4-\sqrt{m-1}< 0\)
\(-\sqrt{m-1}< 0-4\)
\(-\sqrt{m-1}< -4\)
\(\sqrt{m-1}>4\)
\(\hept{\begin{cases}4\ge0\left(llđ\right)\\m-1>4^2\end{cases}}\)
\(m-1>16\)
\(m>17\)