tim x biet (2/5)^x>(2/5)^3.(-2/5)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3\cdot\left(-\frac{2}{5}\right)^2\)
\(\Leftrightarrow\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3\cdot\left(\frac{2}{5}\right)^2\)
\(\Leftrightarrow\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Leftrightarrow x< 5\)
Vậy x < 5
a, \(\left|2x+1\right|=5\Rightarrow2x+1\in\left\{5;-5\right\}\)
+) Nếu :\(2x+1=5\Rightarrow2x=4\Rightarrow x=4\div2=2\)
+) Nếu : \(2x+1=-5\Rightarrow2x=-6\Rightarrow x=-6\div2=-3\)
Vậy \(x\in\left\{2;-3\right\}\)
b, \(\left|x-4\right|=\left|2-x\right|\)
\(\Rightarrow\left[\begin{matrix}x-4=2-x\\x-4=-\left(2-x\right)\end{matrix}\right.\)
+) Nếu : x - 4 = 2 - x
\(\Rightarrow x+x=2+4\Rightarrow2x=6\Rightarrow x=3\)
+) Nếu : x - 4 = - ( 2 - x )
\(\Rightarrow x-4=-2+x\Rightarrow x-x=-2+4\Rightarrow0=2\) ( loại )
Vậy x = 3 thỏa mãn đề bài
c, \(\left|x-5\right|=2-x\Rightarrow\left|x-5\right|+x=2\)
+) Nếu : \(x< 5\Rightarrow x-5< 5-5\Rightarrow x-5< 0\Rightarrow\left|x-5\right|=-x+5\)
Thay vào đề , ta có :
\(-x+5+x=2\Rightarrow-x+x+5=2\Rightarrow5=2\) ( loại )
+) Nếu : \(x\ge5\Rightarrow x-5\ge5-5\Rightarrow x-5\ge0\Rightarrow\left|x-5\right|=x-5\)
Thay vào đề , ta có :
\(\left(x-5\right)-x=2\Rightarrow x-5-x=2\)
\(\Rightarrow x-x-5=2\Rightarrow-5=2\) ( loại )
Vậy \(x\in\varnothing\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Câu 1:
a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)
\(\Leftrightarrow x^2-2x+1< 0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow x^2-5x-x+4>0\)
\(\Leftrightarrow x^2-6x+4>0\)
\(\Leftrightarrow\left(x-3\right)^2>5\)
hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)
a) Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+1\ge1\forall x\)
\(\Rightarrow\left(x-2\right)\left(x^2+1\right)>0\)\(\Leftrightarrow x-2>0\)\(\Leftrightarrow x>2\)
Vậy \(x>2\)
b) \(\left(x+5\right)\left(2-x\right)< 0\)
TH1: \(\hept{\begin{cases}x+5>0\\2-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-5\\2< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-5\\x>2\end{cases}}\Leftrightarrow x>2\)
TH2: \(\hept{\begin{cases}x+5< 0\\2-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -5\\2>x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -5\\x< 2\end{cases}}\Leftrightarrow x< -5\)
Vậy \(x< -5\)hoặc \(x>2\)
Do (-x)^2 = x^2 nên:
=> (2/5)^x > (2/5)^3 × (2/5)^2
=> (2/5)^x > (2/5)^5
=> x > 5 (t/ m).
Chúc bạn học tốt!!😀😀
ooooo thanks