Tính
A=(1/2-1/3)(1/2-1/5)(1/2-1/7)...(1/2-1/99)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(T=(\frac{1}{2}-\frac{1}{3})(\frac{1}{2}-\frac{1}{5})(\frac{1}{2}-\frac{1}{7}).....(\frac{1}{2}-\frac{1}{99})\)
\(\implies T=\frac{1}{2}(1-\frac{2}{3}).\frac{1}{2}(1-\frac{2}{5}).\frac{1}{2}(1-\frac{2}{7}).....\frac{1}{2}(1-\frac{2}{99})\)
Thấy T có: (99-3):2+1=49(SH)
\(\implies T=(\frac{1}{2}.49).[(1-\frac{2}{3}).(1-\frac{2}{5})...(1-\frac{2}{99})\)
\(\implies T=\frac{49}{2}.\frac{1}{99}=\frac{49}{198}\)
a: \(A=\dfrac{1}{\left(3-1\right)\left(3+1\right)}+\dfrac{1}{\left(5-1\right)\left(5+1\right)}+...+\dfrac{1}{\left(99-1\right)\left(99+1\right)}\)
\(=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{98\cdot100}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{49}{100}=\dfrac{49}{200}\)
a/ A= 1-3+5-7+9-11+......+97-99
= -2+(-2)+(-2)+......+(-2)
= (-2).25=-50
b/B=-1-2-3-4-...-100
=-(1+2+3+4+...+100)
=-5050
c/C=1-2+3-4+5-6+......+99-100
= -1+(-1)+(-1)+.............+(-1)
=(-1).50=-50
d/D=1-2-3+4+5-6-7+8+9-....+94-95
= (1-2-3+4)+(5-6-7+8)+.......+(92-93-94+95)
= 0+0+0+...+0=0
Đặt \(S=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+....+\frac{1}{2^{99}}\)
\(\Rightarrow\frac{1}{2^2}S=\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+.....+\frac{1}{2^{101}}\)
\(\Rightarrow S-\frac{1}{4}S=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+....+\frac{1}{2^{99}}-\frac{1}{2^3}-\frac{1}{2^5}-\frac{1}{2^7}-....-\frac{1}{2^{101}}\)
\(\Rightarrow S\frac{1}{3}=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\Rightarrow S=\frac{3}{2}-\frac{3}{2^{101}}\)
Vậy \(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+....+\frac{1}{2^{99}}=\frac{3}{2}-\frac{3}{2^{101}}\)
T=(12−13)(12−15)(12−17).....(12−199)T=(12−13)(12−15)(12−17).....(12−199)
⟹T=12(1−23).12(1−25).12(1−27).....12(1−299)⟹T=12(1−23).12(1−25).12(1−27).....12(1−299)
Thấy T có: (99-3):2+1=49(SH)
⟹T=(12.49).[(1−23).(1−25)...(1−299)⟹T=(12.49).[(1−23).(1−25)...(1−299)
⟹T=492.199=49198